Cargando…

Self-incremental learning vector quantization with human cognitive biases

Human beings have adaptively rational cognitive biases for efficiently acquiring concepts from small-sized datasets. With such inductive biases, humans can generalize concepts by learning a small number of samples. By incorporating human cognitive biases into learning vector quantization (LVQ), a pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Manome, Nobuhito, Shinohara, Shuji, Takahashi, Tatsuji, Chen, Yu, Chung, Ung-il
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887244/
https://www.ncbi.nlm.nih.gov/pubmed/33594132
http://dx.doi.org/10.1038/s41598-021-83182-4
Descripción
Sumario:Human beings have adaptively rational cognitive biases for efficiently acquiring concepts from small-sized datasets. With such inductive biases, humans can generalize concepts by learning a small number of samples. By incorporating human cognitive biases into learning vector quantization (LVQ), a prototype-based online machine learning method, we developed self-incremental LVQ (SILVQ) methods that can be easily interpreted. We first describe a method to automatically adjust the learning rate that incorporates human cognitive biases. Second, SILVQ, which self-increases the prototypes based on the method for automatically adjusting the learning rate, is described. The performance levels of the proposed methods are evaluated in experiments employing four real and two artificial datasets. Compared with the original learning vector quantization algorithms, our methods not only effectively remove the need for parameter tuning, but also achieve higher accuracy from learning small numbers of instances. In the cases of larger numbers of instances, SILVQ can still achieve an accuracy that is equal to or better than those of existing representative LVQ algorithms. Furthermore, SILVQ can learn linearly inseparable conceptual structures with the required and sufficient number of prototypes without overfitting.