Cargando…
Self-incremental learning vector quantization with human cognitive biases
Human beings have adaptively rational cognitive biases for efficiently acquiring concepts from small-sized datasets. With such inductive biases, humans can generalize concepts by learning a small number of samples. By incorporating human cognitive biases into learning vector quantization (LVQ), a pr...
Autores principales: | Manome, Nobuhito, Shinohara, Shuji, Takahashi, Tatsuji, Chen, Yu, Chung, Ung-il |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887244/ https://www.ncbi.nlm.nih.gov/pubmed/33594132 http://dx.doi.org/10.1038/s41598-021-83182-4 |
Ejemplares similares
-
A new method of Bayesian causal inference in non-stationary environments
por: Shinohara, Shuji, et al.
Publicado: (2020) -
Round Randomized Learning Vector Quantization for Brain Tumor Imaging
por: Sheikh Abdullah, Siti Norul Huda, et al.
Publicado: (2016) -
Classification of Incidental Carcinoma of the Prostate Using Learning Vector Quantization and Support Vector Machines
por: Mattfeldt, Torsten, et al.
Publicado: (2004) -
Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization
por: Biehl, Michael, et al.
Publicado: (2013) -
Multipose Face Recognition-Based Combined Adaptive Deep Learning Vector Quantization
por: Sarhan, Shahenda, et al.
Publicado: (2020)