Cargando…
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
Pelvic radiograph (PXR) is essential for detecting proximal femur and pelvis injuries in trauma patients, which is also the key component for trauma survey. None of the currently available algorithms can accurately detect all kinds of trauma-related radiographic findings on PXRs. Here, we show a uni...
Autores principales: | Cheng, Chi-Tung, Wang, Yirui, Chen, Huan-Wu, Hsiao, Po-Meng, Yeh, Chun-Nan, Hsieh, Chi-Hsun, Miao, Shun, Xiao, Jing, Liao, Chien-Hung, Lu, Le |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887334/ https://www.ncbi.nlm.nih.gov/pubmed/33594071 http://dx.doi.org/10.1038/s41467-021-21311-3 |
Ejemplares similares
-
Pelvic injury prognosis is more closely related to vascular injury severity than anatomical fracture complexity: the WSES classification for pelvic trauma makes sense
por: Wu, Yu-Tung, et al.
Publicado: (2020) -
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs
por: Cheng, Chi-Tung, et al.
Publicado: (2019) -
Predicting the Risk of Total Hip Replacement by Using A Deep Learning Algorithm on Plain Pelvic Radiographs: Diagnostic Study
por: Chen, Chih-Chi, et al.
Publicado: (2023) -
Automatic Hip Detection in Anteroposterior Pelvic Radiographs—A Labelless Practical Framework
por: Liu, Feng-Yu, et al.
Publicado: (2021) -
The Impact of Selenium Supplementation on Trauma Patients—Systematic Review and Meta-Analysis
por: Huang, Jen-Fu, et al.
Publicado: (2022)