Cargando…
Rapid and sensitive triple-mode detection of causative SARS-CoV-2 virus specific genes through interaction between genes and nanoparticles
The recent outbreak of coronavirus disease 2019 (COVID-19) is highly infectious, which threatens human health and has received increasing attention. So far, there is no specific drug or vaccine for COVID-19. Therefore, it is urgent to establish a rapid and sensitive early diagnosis platform, which i...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887451/ https://www.ncbi.nlm.nih.gov/pubmed/33736792 http://dx.doi.org/10.1016/j.aca.2021.338330 |
Sumario: | The recent outbreak of coronavirus disease 2019 (COVID-19) is highly infectious, which threatens human health and has received increasing attention. So far, there is no specific drug or vaccine for COVID-19. Therefore, it is urgent to establish a rapid and sensitive early diagnosis platform, which is of great significance for physical separation of infected persons after rapid diagnosis. Here, we propose a colorimetric/SERS/fluorescence triple-mode biosensor based on AuNPs for the fast selective detection of viral RNA in 40 min. AuNPs with average size of 17 nm were synthesized, and colorimetric, surface enhanced Raman scattering (SERS), and fluorescence signals of sensors are simultaneously detected based on their basic aggregation property and affinity energy to different bio-molecules. The sensor achieves a limit detection of femtomole level in all triple modes, which is 160 fM in absorbance mode, 259 fM in fluorescence mode, and 395 fM in SERS mode. The triple-mode signals of the sensor are verified with each other to make the experimental results more accurate, and the capacity to recognize single-base mismatch in each working mode minimizes the false negative/positive reading of SARS-CoV-2. The proposed sensing platform provides a new way for the fast, sensitive, and selective detection of COVID-19 and other diseases. |
---|