Cargando…

Band Structure Extraction at Hybrid Narrow‐Gap Semiconductor–Metal Interfaces

The design of epitaxial semiconductor–superconductor and semiconductor–metal quantum devices requires a detailed understanding of the interfacial electronic band structure. However, the band alignment of buried interfaces is difficult to predict theoretically and to measure experimentally. This work...

Descripción completa

Detalles Bibliográficos
Autores principales: Schuwalow, Sergej, Schröter, Niels B. M., Gukelberger, Jan, Thomas, Candice, Strocov, Vladimir, Gamble, John, Chikina, Alla, Caputo, Marco, Krieger, Jonas, Gardner, Geoffrey C., Troyer, Matthias, Aeppli, Gabriel, Manfra, Michael J., Krogstrup, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887586/
https://www.ncbi.nlm.nih.gov/pubmed/33643798
http://dx.doi.org/10.1002/advs.202003087
_version_ 1783652012567560192
author Schuwalow, Sergej
Schröter, Niels B. M.
Gukelberger, Jan
Thomas, Candice
Strocov, Vladimir
Gamble, John
Chikina, Alla
Caputo, Marco
Krieger, Jonas
Gardner, Geoffrey C.
Troyer, Matthias
Aeppli, Gabriel
Manfra, Michael J.
Krogstrup, Peter
author_facet Schuwalow, Sergej
Schröter, Niels B. M.
Gukelberger, Jan
Thomas, Candice
Strocov, Vladimir
Gamble, John
Chikina, Alla
Caputo, Marco
Krieger, Jonas
Gardner, Geoffrey C.
Troyer, Matthias
Aeppli, Gabriel
Manfra, Michael J.
Krogstrup, Peter
author_sort Schuwalow, Sergej
collection PubMed
description The design of epitaxial semiconductor–superconductor and semiconductor–metal quantum devices requires a detailed understanding of the interfacial electronic band structure. However, the band alignment of buried interfaces is difficult to predict theoretically and to measure experimentally. This work presents a procedure that allows to reliably determine critical parameters for engineering quantum devices; band offset, band bending profile, and number of occupied quantum well subbands of interfacial accumulation layers at semiconductor‐metal interfaces. Soft X‐ray angle‐resolved photoemission is used to directly measure the quantum well states as well as valence bands and core levels for the InAs(100)/Al interface, an important platform for Majorana‐zero‐mode based topological qubits, and demonstrate that the fabrication process strongly influences the band offset, which in turn controls the topological phase diagrams. Since the method is transferable to other narrow gap semiconductors, it can be used more generally for engineering semiconductor–metal and semiconductor–superconductor interfaces in gate‐tunable superconducting devices.
format Online
Article
Text
id pubmed-7887586
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78875862021-02-26 Band Structure Extraction at Hybrid Narrow‐Gap Semiconductor–Metal Interfaces Schuwalow, Sergej Schröter, Niels B. M. Gukelberger, Jan Thomas, Candice Strocov, Vladimir Gamble, John Chikina, Alla Caputo, Marco Krieger, Jonas Gardner, Geoffrey C. Troyer, Matthias Aeppli, Gabriel Manfra, Michael J. Krogstrup, Peter Adv Sci (Weinh) Communications The design of epitaxial semiconductor–superconductor and semiconductor–metal quantum devices requires a detailed understanding of the interfacial electronic band structure. However, the band alignment of buried interfaces is difficult to predict theoretically and to measure experimentally. This work presents a procedure that allows to reliably determine critical parameters for engineering quantum devices; band offset, band bending profile, and number of occupied quantum well subbands of interfacial accumulation layers at semiconductor‐metal interfaces. Soft X‐ray angle‐resolved photoemission is used to directly measure the quantum well states as well as valence bands and core levels for the InAs(100)/Al interface, an important platform for Majorana‐zero‐mode based topological qubits, and demonstrate that the fabrication process strongly influences the band offset, which in turn controls the topological phase diagrams. Since the method is transferable to other narrow gap semiconductors, it can be used more generally for engineering semiconductor–metal and semiconductor–superconductor interfaces in gate‐tunable superconducting devices. John Wiley and Sons Inc. 2020-12-31 /pmc/articles/PMC7887586/ /pubmed/33643798 http://dx.doi.org/10.1002/advs.202003087 Text en © 2020 The Authors. Advanced Science published by Wiley‐VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Schuwalow, Sergej
Schröter, Niels B. M.
Gukelberger, Jan
Thomas, Candice
Strocov, Vladimir
Gamble, John
Chikina, Alla
Caputo, Marco
Krieger, Jonas
Gardner, Geoffrey C.
Troyer, Matthias
Aeppli, Gabriel
Manfra, Michael J.
Krogstrup, Peter
Band Structure Extraction at Hybrid Narrow‐Gap Semiconductor–Metal Interfaces
title Band Structure Extraction at Hybrid Narrow‐Gap Semiconductor–Metal Interfaces
title_full Band Structure Extraction at Hybrid Narrow‐Gap Semiconductor–Metal Interfaces
title_fullStr Band Structure Extraction at Hybrid Narrow‐Gap Semiconductor–Metal Interfaces
title_full_unstemmed Band Structure Extraction at Hybrid Narrow‐Gap Semiconductor–Metal Interfaces
title_short Band Structure Extraction at Hybrid Narrow‐Gap Semiconductor–Metal Interfaces
title_sort band structure extraction at hybrid narrow‐gap semiconductor–metal interfaces
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887586/
https://www.ncbi.nlm.nih.gov/pubmed/33643798
http://dx.doi.org/10.1002/advs.202003087
work_keys_str_mv AT schuwalowsergej bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT schroternielsbm bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT gukelbergerjan bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT thomascandice bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT strocovvladimir bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT gamblejohn bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT chikinaalla bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT caputomarco bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT kriegerjonas bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT gardnergeoffreyc bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT troyermatthias bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT aeppligabriel bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT manframichaelj bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces
AT krogstruppeter bandstructureextractionathybridnarrowgapsemiconductormetalinterfaces