Cargando…
Direct Pyrolysis of a Manganese‐Triazolate Metal–Organic Framework into Air‐Stable Manganese Nitride Nanoparticles
Although metal–organic frameworks (MOFs) are being widely used to derive functional nanomaterials through pyrolysis, the actual mechanisms involved remain unclear. In the limited studies to date, elemental metallic species are found to be the initial products, which limits the variety of MOF‐derived...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887590/ https://www.ncbi.nlm.nih.gov/pubmed/33643801 http://dx.doi.org/10.1002/advs.202003212 |
_version_ | 1783652013484015616 |
---|---|
author | Hu, Yating Li, Changjian Xi, Shibo Deng, Zeyu Liu, Ximeng Cheetham, Anthony K. Wang, John |
author_facet | Hu, Yating Li, Changjian Xi, Shibo Deng, Zeyu Liu, Ximeng Cheetham, Anthony K. Wang, John |
author_sort | Hu, Yating |
collection | PubMed |
description | Although metal–organic frameworks (MOFs) are being widely used to derive functional nanomaterials through pyrolysis, the actual mechanisms involved remain unclear. In the limited studies to date, elemental metallic species are found to be the initial products, which limits the variety of MOF‐derived nanomaterials. Here, the pyrolysis of a manganese triazolate MOF is examined carefully in terms of phase transformation, reaction pathways, and morphology evolution in different conditions. Surprisingly, the formation of metal is not detected when manganese triazolate is pyrolyzed in an oxygen‐free environment. Instead, a direct transformation into nanoparticles of manganese nitride, Mn(2)N(x) embedded in N‐doped graphitic carbon took place. The electrically conductive Mn(2)N(x) nanoparticles show much better air stability than bulk samples and exhibit promising electrocatalytic performance for the oxygen reduction reaction. The findings on pyrolysis mechanisms expand the potential of MOF as a precursor to derive more functional nanomaterials. |
format | Online Article Text |
id | pubmed-7887590 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78875902021-02-26 Direct Pyrolysis of a Manganese‐Triazolate Metal–Organic Framework into Air‐Stable Manganese Nitride Nanoparticles Hu, Yating Li, Changjian Xi, Shibo Deng, Zeyu Liu, Ximeng Cheetham, Anthony K. Wang, John Adv Sci (Weinh) Communications Although metal–organic frameworks (MOFs) are being widely used to derive functional nanomaterials through pyrolysis, the actual mechanisms involved remain unclear. In the limited studies to date, elemental metallic species are found to be the initial products, which limits the variety of MOF‐derived nanomaterials. Here, the pyrolysis of a manganese triazolate MOF is examined carefully in terms of phase transformation, reaction pathways, and morphology evolution in different conditions. Surprisingly, the formation of metal is not detected when manganese triazolate is pyrolyzed in an oxygen‐free environment. Instead, a direct transformation into nanoparticles of manganese nitride, Mn(2)N(x) embedded in N‐doped graphitic carbon took place. The electrically conductive Mn(2)N(x) nanoparticles show much better air stability than bulk samples and exhibit promising electrocatalytic performance for the oxygen reduction reaction. The findings on pyrolysis mechanisms expand the potential of MOF as a precursor to derive more functional nanomaterials. John Wiley and Sons Inc. 2021-01-04 /pmc/articles/PMC7887590/ /pubmed/33643801 http://dx.doi.org/10.1002/advs.202003212 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Hu, Yating Li, Changjian Xi, Shibo Deng, Zeyu Liu, Ximeng Cheetham, Anthony K. Wang, John Direct Pyrolysis of a Manganese‐Triazolate Metal–Organic Framework into Air‐Stable Manganese Nitride Nanoparticles |
title | Direct Pyrolysis of a Manganese‐Triazolate Metal–Organic Framework into Air‐Stable Manganese Nitride Nanoparticles |
title_full | Direct Pyrolysis of a Manganese‐Triazolate Metal–Organic Framework into Air‐Stable Manganese Nitride Nanoparticles |
title_fullStr | Direct Pyrolysis of a Manganese‐Triazolate Metal–Organic Framework into Air‐Stable Manganese Nitride Nanoparticles |
title_full_unstemmed | Direct Pyrolysis of a Manganese‐Triazolate Metal–Organic Framework into Air‐Stable Manganese Nitride Nanoparticles |
title_short | Direct Pyrolysis of a Manganese‐Triazolate Metal–Organic Framework into Air‐Stable Manganese Nitride Nanoparticles |
title_sort | direct pyrolysis of a manganese‐triazolate metal–organic framework into air‐stable manganese nitride nanoparticles |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887590/ https://www.ncbi.nlm.nih.gov/pubmed/33643801 http://dx.doi.org/10.1002/advs.202003212 |
work_keys_str_mv | AT huyating directpyrolysisofamanganesetriazolatemetalorganicframeworkintoairstablemanganesenitridenanoparticles AT lichangjian directpyrolysisofamanganesetriazolatemetalorganicframeworkintoairstablemanganesenitridenanoparticles AT xishibo directpyrolysisofamanganesetriazolatemetalorganicframeworkintoairstablemanganesenitridenanoparticles AT dengzeyu directpyrolysisofamanganesetriazolatemetalorganicframeworkintoairstablemanganesenitridenanoparticles AT liuximeng directpyrolysisofamanganesetriazolatemetalorganicframeworkintoairstablemanganesenitridenanoparticles AT cheethamanthonyk directpyrolysisofamanganesetriazolatemetalorganicframeworkintoairstablemanganesenitridenanoparticles AT wangjohn directpyrolysisofamanganesetriazolatemetalorganicframeworkintoairstablemanganesenitridenanoparticles |