Cargando…
Organic biopolymers of venus clams: Collagen-related matrix in the bivalve shells with crossed-lamellar ultrastructure
BACKGROUND: Biochemical studies and spectroscopic techniques have shown that chitin-silk fibroins are common in nacroprismatic bivalve shells. However, the nature of organic biopolymers in the less well studied shell architectures, such as crossed lamellar shells, remain unknown. Here, two venus she...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887640/ https://www.ncbi.nlm.nih.gov/pubmed/33644422 http://dx.doi.org/10.1016/j.bbrep.2021.100939 |
_version_ | 1783652024247648256 |
---|---|
author | Agbaje, Oluwatoosin B.A. Dominguez, J. Gabriel Jacob, Dorrit E. |
author_facet | Agbaje, Oluwatoosin B.A. Dominguez, J. Gabriel Jacob, Dorrit E. |
author_sort | Agbaje, Oluwatoosin B.A. |
collection | PubMed |
description | BACKGROUND: Biochemical studies and spectroscopic techniques have shown that chitin-silk fibroins are common in nacroprismatic bivalve shells. However, the nature of organic biopolymers in the less well studied shell architectures, such as crossed lamellar shells, remain unknown. Here, two venus shells, Callista disrupta and Callista kingii, with crossed lamellar ultrastructure have been studied. METHODS: We employed thermal gravimetric analysis, optical-, confocal- and scanning electron-microscopes, gel-sodium dodecyl sulfate (gel-SDS), FTIR, ultra-performance liquid chromatography and high-performance anion-exchange chromatography system with pulsed amperometric detection to analyse organic macromolecules in the shells. RESULTS: Thermal analysis showed a low concentration of organic macromolecules in C. disrupta (1.38 wt%) and in C. kingii (1.71 wt%). A combination of biochemical protocols, including Calcofluor White staining and FTIR spectroscopic assessment, indicate that amino-polysaccharide chitin together with proteins, are present in the organic scaffolding of the shells. Scanning electron microscope of insoluble acid biopolymer extracts as well as FTIR technique show that the hierarchical structural organizations of organic biopolymers consist collagen-related matrix. Our histochemical fixing and staining techniques reveal many discrete proteins and glycoproteins from soluble organic macromolecules on the gel-SDS. We show here ‘singlet’ and ‘doublet’ glycosaminoglycan bands that are far above 260 kDa. GENERAL SIGNIFICANCE/CONCLUSIONS: The presence of collagen matrix in Callista shells shows promise for the new source of biomaterials. Most importantly, the structural organization of the proteinaceous motif is predominantly helical structures and not silk-fibroin unlike in nacreous bivalve shells. |
format | Online Article Text |
id | pubmed-7887640 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-78876402021-02-26 Organic biopolymers of venus clams: Collagen-related matrix in the bivalve shells with crossed-lamellar ultrastructure Agbaje, Oluwatoosin B.A. Dominguez, J. Gabriel Jacob, Dorrit E. Biochem Biophys Rep Research Article BACKGROUND: Biochemical studies and spectroscopic techniques have shown that chitin-silk fibroins are common in nacroprismatic bivalve shells. However, the nature of organic biopolymers in the less well studied shell architectures, such as crossed lamellar shells, remain unknown. Here, two venus shells, Callista disrupta and Callista kingii, with crossed lamellar ultrastructure have been studied. METHODS: We employed thermal gravimetric analysis, optical-, confocal- and scanning electron-microscopes, gel-sodium dodecyl sulfate (gel-SDS), FTIR, ultra-performance liquid chromatography and high-performance anion-exchange chromatography system with pulsed amperometric detection to analyse organic macromolecules in the shells. RESULTS: Thermal analysis showed a low concentration of organic macromolecules in C. disrupta (1.38 wt%) and in C. kingii (1.71 wt%). A combination of biochemical protocols, including Calcofluor White staining and FTIR spectroscopic assessment, indicate that amino-polysaccharide chitin together with proteins, are present in the organic scaffolding of the shells. Scanning electron microscope of insoluble acid biopolymer extracts as well as FTIR technique show that the hierarchical structural organizations of organic biopolymers consist collagen-related matrix. Our histochemical fixing and staining techniques reveal many discrete proteins and glycoproteins from soluble organic macromolecules on the gel-SDS. We show here ‘singlet’ and ‘doublet’ glycosaminoglycan bands that are far above 260 kDa. GENERAL SIGNIFICANCE/CONCLUSIONS: The presence of collagen matrix in Callista shells shows promise for the new source of biomaterials. Most importantly, the structural organization of the proteinaceous motif is predominantly helical structures and not silk-fibroin unlike in nacreous bivalve shells. Elsevier 2021-02-12 /pmc/articles/PMC7887640/ /pubmed/33644422 http://dx.doi.org/10.1016/j.bbrep.2021.100939 Text en © 2021 The Authors. Published by Elsevier B.V. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Agbaje, Oluwatoosin B.A. Dominguez, J. Gabriel Jacob, Dorrit E. Organic biopolymers of venus clams: Collagen-related matrix in the bivalve shells with crossed-lamellar ultrastructure |
title | Organic biopolymers of venus clams: Collagen-related matrix in the bivalve shells with crossed-lamellar ultrastructure |
title_full | Organic biopolymers of venus clams: Collagen-related matrix in the bivalve shells with crossed-lamellar ultrastructure |
title_fullStr | Organic biopolymers of venus clams: Collagen-related matrix in the bivalve shells with crossed-lamellar ultrastructure |
title_full_unstemmed | Organic biopolymers of venus clams: Collagen-related matrix in the bivalve shells with crossed-lamellar ultrastructure |
title_short | Organic biopolymers of venus clams: Collagen-related matrix in the bivalve shells with crossed-lamellar ultrastructure |
title_sort | organic biopolymers of venus clams: collagen-related matrix in the bivalve shells with crossed-lamellar ultrastructure |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887640/ https://www.ncbi.nlm.nih.gov/pubmed/33644422 http://dx.doi.org/10.1016/j.bbrep.2021.100939 |
work_keys_str_mv | AT agbajeoluwatoosinba organicbiopolymersofvenusclamscollagenrelatedmatrixinthebivalveshellswithcrossedlamellarultrastructure AT dominguezjgabriel organicbiopolymersofvenusclamscollagenrelatedmatrixinthebivalveshellswithcrossedlamellarultrastructure AT jacobdorrite organicbiopolymersofvenusclamscollagenrelatedmatrixinthebivalveshellswithcrossedlamellarultrastructure |