Cargando…
Clonal spread of multi-resistant Gallibacterium anatis isolates among Iranian broilers and layers
Gallibacterium anatis is a common cause of reproductive tract infection in chickens, which leads to reduced egg production and increased mortality. This study was undertaken to investigate prevalence of G. anatis in 12 poultry flocks originating from Iranian provinces with leading chicken production...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887718/ https://www.ncbi.nlm.nih.gov/pubmed/33596999 http://dx.doi.org/10.1186/s13567-021-00894-1 |
Sumario: | Gallibacterium anatis is a common cause of reproductive tract infection in chickens, which leads to reduced egg production and increased mortality. This study was undertaken to investigate prevalence of G. anatis in 12 poultry flocks originating from Iranian provinces with leading chicken production and to determine genetic diversity, antimicrobial resistance, and the presence of major antigens of the isolates investigated. Out of the 120 chicken tracheal samples collected and tested, 84 (70%) were positive for G. anatis. Genotyping by Pulse Field Gel Electrophoresis and genome sequencing revealed a total of 24 pulsotypes for 71 strains (at a 87% similarity level) and seven genome clusters comprising 21 strains (97% similarity level), respectively. The combination of the two typing methods confirmed the presence of several genotypes originating from a common ancestor affecting poultry yet also suggested that identical clones were shared among chickens within farms and between different farms. The latter finding is to our knowledge the first example of clonal presence of G. anatis in epidemiologically unrelated farms. The 21 sequenced strains were characterized against a panel of commonly used antibiotics and showed lowered sensitivity to tetracycline (76.2%) and enrofloxacin (90.5%). The widespread presence of multiresistant G. anatis isolates calls for non-antibiotic prophylactics. Three major immunogen genes, gtxA, Gab_1309 and Gab_2312 were detected in the isolates indicating these antigens likely represent effective vaccine targets. A conserved sequence of the gtxA gene across a range of epidemiologically independent strains suggests the use of GtxA for future vaccine development purposes. |
---|