Cargando…
Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children
BACKGROUND: During the second and third year after birth the gut microbiota (GM) is subjected to important development. The polycyclic aromatic hydrocarbon (PAH) exposure could influence the GM in animal and early postnatal exposure is associated with neurodevelopment disorder in children. This stud...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888120/ https://www.ncbi.nlm.nih.gov/pubmed/33596845 http://dx.doi.org/10.1186/s12887-021-02539-w |
_version_ | 1783652106000924672 |
---|---|
author | Zhang, Wei Sun, Zhongqing Zhang, Qian Sun, Zhitao Su, Ya Song, Jiahui Wang, Bingling Gao, Ruqin |
author_facet | Zhang, Wei Sun, Zhongqing Zhang, Qian Sun, Zhitao Su, Ya Song, Jiahui Wang, Bingling Gao, Ruqin |
author_sort | Zhang, Wei |
collection | PubMed |
description | BACKGROUND: During the second and third year after birth the gut microbiota (GM) is subjected to important development. The polycyclic aromatic hydrocarbon (PAH) exposure could influence the GM in animal and early postnatal exposure is associated with neurodevelopment disorder in children. This study was designed to explore the possible influence of the polycyclic aromatic hydrocarbons (PAHs) on the composition of the gut microbiota (GM) and neurodevelopment in a sample of 38 healthy children at the age of 3 years. METHODS: A brief development (Gesell Development Inventory, GDI) and behavior test (Child Behavior Checklist, CBCL) were completed on 3-yr-olds and stool samples were collected for 16S rRNA V4-V5 sequencing. The PAH-DNA adduct in the umbilical cord blood and the urinary hydroxyl PAHs (OH-PAHs) at the age of 12 months were measured as pre- and postnatal PAH exposure, respectively. RESULTS: The most abundant two phyla were Bacteroidetes (68.6%) and Firmicutes (24.2%). The phyla Firmicutes, Actinobacteria, Proteobacteria, Tenericutes, and Lentisphaerae were positively correlated with most domain behaviors of the GDI, whereas the Bacteroidetes, Cyanobacteria, and Fusobacteria were negatively correlated. Correspondingly, the phyla Bacteroidetes, Actinobacteria, and Fusobacteria showed positive correlations with most CBCL core and broadband syndromes, whereas the Firmicutes, Verrucomicrobia, Synergistetes, Proteobacteria and Tenericules were negatively correlated. The OH-PAH levels were not significantly associated with the Firmicutes phylum whereas the Bacteroidetes, Bacteroidia, and Bacteroidales all showed significant negative association with the OH-PAH levels. CONCLUSION: The current findings suggest that composition of the GM is associated with neurodevelopment of the child. PAHs seem to change the relative abundance of some taxa (some deleted and some recruited) to counteract the negative effects of the PAHs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12887-021-02539-w. |
format | Online Article Text |
id | pubmed-7888120 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-78881202021-02-22 Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children Zhang, Wei Sun, Zhongqing Zhang, Qian Sun, Zhitao Su, Ya Song, Jiahui Wang, Bingling Gao, Ruqin BMC Pediatr Research Article BACKGROUND: During the second and third year after birth the gut microbiota (GM) is subjected to important development. The polycyclic aromatic hydrocarbon (PAH) exposure could influence the GM in animal and early postnatal exposure is associated with neurodevelopment disorder in children. This study was designed to explore the possible influence of the polycyclic aromatic hydrocarbons (PAHs) on the composition of the gut microbiota (GM) and neurodevelopment in a sample of 38 healthy children at the age of 3 years. METHODS: A brief development (Gesell Development Inventory, GDI) and behavior test (Child Behavior Checklist, CBCL) were completed on 3-yr-olds and stool samples were collected for 16S rRNA V4-V5 sequencing. The PAH-DNA adduct in the umbilical cord blood and the urinary hydroxyl PAHs (OH-PAHs) at the age of 12 months were measured as pre- and postnatal PAH exposure, respectively. RESULTS: The most abundant two phyla were Bacteroidetes (68.6%) and Firmicutes (24.2%). The phyla Firmicutes, Actinobacteria, Proteobacteria, Tenericutes, and Lentisphaerae were positively correlated with most domain behaviors of the GDI, whereas the Bacteroidetes, Cyanobacteria, and Fusobacteria were negatively correlated. Correspondingly, the phyla Bacteroidetes, Actinobacteria, and Fusobacteria showed positive correlations with most CBCL core and broadband syndromes, whereas the Firmicutes, Verrucomicrobia, Synergistetes, Proteobacteria and Tenericules were negatively correlated. The OH-PAH levels were not significantly associated with the Firmicutes phylum whereas the Bacteroidetes, Bacteroidia, and Bacteroidales all showed significant negative association with the OH-PAH levels. CONCLUSION: The current findings suggest that composition of the GM is associated with neurodevelopment of the child. PAHs seem to change the relative abundance of some taxa (some deleted and some recruited) to counteract the negative effects of the PAHs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12887-021-02539-w. BioMed Central 2021-02-17 /pmc/articles/PMC7888120/ /pubmed/33596845 http://dx.doi.org/10.1186/s12887-021-02539-w Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Zhang, Wei Sun, Zhongqing Zhang, Qian Sun, Zhitao Su, Ya Song, Jiahui Wang, Bingling Gao, Ruqin Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children |
title | Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children |
title_full | Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children |
title_fullStr | Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children |
title_full_unstemmed | Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children |
title_short | Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children |
title_sort | preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888120/ https://www.ncbi.nlm.nih.gov/pubmed/33596845 http://dx.doi.org/10.1186/s12887-021-02539-w |
work_keys_str_mv | AT zhangwei preliminaryevidenceforaninfluenceofexposuretopolycyclicaromatichydrocarbonsonthecompositionofthegutmicrobiotaandneurodevelopmentinthreeyearoldhealthychildren AT sunzhongqing preliminaryevidenceforaninfluenceofexposuretopolycyclicaromatichydrocarbonsonthecompositionofthegutmicrobiotaandneurodevelopmentinthreeyearoldhealthychildren AT zhangqian preliminaryevidenceforaninfluenceofexposuretopolycyclicaromatichydrocarbonsonthecompositionofthegutmicrobiotaandneurodevelopmentinthreeyearoldhealthychildren AT sunzhitao preliminaryevidenceforaninfluenceofexposuretopolycyclicaromatichydrocarbonsonthecompositionofthegutmicrobiotaandneurodevelopmentinthreeyearoldhealthychildren AT suya preliminaryevidenceforaninfluenceofexposuretopolycyclicaromatichydrocarbonsonthecompositionofthegutmicrobiotaandneurodevelopmentinthreeyearoldhealthychildren AT songjiahui preliminaryevidenceforaninfluenceofexposuretopolycyclicaromatichydrocarbonsonthecompositionofthegutmicrobiotaandneurodevelopmentinthreeyearoldhealthychildren AT wangbingling preliminaryevidenceforaninfluenceofexposuretopolycyclicaromatichydrocarbonsonthecompositionofthegutmicrobiotaandneurodevelopmentinthreeyearoldhealthychildren AT gaoruqin preliminaryevidenceforaninfluenceofexposuretopolycyclicaromatichydrocarbonsonthecompositionofthegutmicrobiotaandneurodevelopmentinthreeyearoldhealthychildren |