Cargando…
Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models
Graph neural networks (GNN) has been considered as an attractive modelling method for molecular property prediction, and numerous studies have shown that GNN could yield more promising results than traditional descriptor-based methods. In this study, based on 11 public datasets covering various prop...
Autores principales: | Jiang, Dejun, Wu, Zhenxing, Hsieh, Chang-Yu, Chen, Guangyong, Liao, Ben, Wang, Zhe, Shen, Chao, Cao, Dongsheng, Wu, Jian, Hou, Tingjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888189/ https://www.ncbi.nlm.nih.gov/pubmed/33597034 http://dx.doi.org/10.1186/s13321-020-00479-8 |
Ejemplares similares
-
Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking
por: Wu, Zhenxing, et al.
Publicado: (2023) -
A New Graph-Based Molecular Descriptor Using the Canonical Representation of the Molecule
por: Hentabli, Hamza, et al.
Publicado: (2014) -
Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network
por: Du, Hongyan, et al.
Publicado: (2022) -
Kinome-wide polypharmacology profiling of small molecules by multi-task graph isomorphism network approach
por: Bao, Lingjie, et al.
Publicado: (2023) -
Estimating Descriptors for Large Graphs
por: Hassan, Zohair Raza, et al.
Publicado: (2020)