Cargando…
Fusing RGB and Thermal Imagery with Channel State Information for Abnormal Activity Detection Using Multimodal Bidirectional LSTM
In this paper, we present a multimodal deep model for detection of abnormal activity, based on bidirectional Long Short-Term Memory neural networks (LSTM). The proposed model exploits three different input modalities: RGB imagery, thermographic imagery and Channel State Information from Wi-Fi signal...
Autores principales: | Bakalos, Nikolaos, Voulodimos, Athanasios, Doulamis, Nikolaos, Doulamis, Anastasios, Papasotiriou, Kassiani, Bimpas, Matthaios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888295/ http://dx.doi.org/10.1007/978-3-030-69781-5_6 |
Ejemplares similares
-
Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals
por: Protopapadakis, Eftychios, et al.
Publicado: (2017) -
Deep Learning for Computer Vision: A Brief Review
por: Voulodimos, Athanasios, et al.
Publicado: (2018) -
A Few-Shot U-Net Deep Learning Model for COVID-19 Infected Area Segmentation in CT Images
por: Voulodimos, Athanasios, et al.
Publicado: (2021) -
Towards Trustworthy Energy Disaggregation: A Review of Challenges, Methods, and Perspectives for Non-Intrusive Load Monitoring
por: Kaselimi, Maria, et al.
Publicado: (2022) -
COVID-19 Spatio-Temporal Evolution Using Deep Learning at a European Level
por: Kavouras, Ioannis, et al.
Publicado: (2022)