Cargando…
Detection of a pederin‐like compound using a dilution‐to‐extinction‐based platform for the isolation of marine bacteria in drug discovery strategies
The continued development of culturing technologies for the discovery of new molecules from marine microbes is of paramount importance for drug discovery. Coupled with this, the use of the high‐throughput approach shows promise for increasing the number of Gram‐negative and non‐filamentous bacteria...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888454/ https://www.ncbi.nlm.nih.gov/pubmed/33094913 http://dx.doi.org/10.1111/1751-7915.13679 |
_version_ | 1783652166687260672 |
---|---|
author | Benítez, Xulio Gonzalez, Elena G. García, Jesus Zúñiga, Paz de la Calle, Fernando Cuevas, Carmen |
author_facet | Benítez, Xulio Gonzalez, Elena G. García, Jesus Zúñiga, Paz de la Calle, Fernando Cuevas, Carmen |
author_sort | Benítez, Xulio |
collection | PubMed |
description | The continued development of culturing technologies for the discovery of new molecules from marine microbes is of paramount importance for drug discovery. Coupled with this, the use of the high‐throughput approach shows promise for increasing the number of Gram‐negative and non‐filamentous bacteria cultures that can be surveyed, since they show a lower potential of bioactivity. In this work, we propose a new strategy of high‐throughput cultivation of bacteria inspired by a dilution‐to‐extinction (DTE) methodology for the isolation of, and screening for, new cytotoxic compound producing marine bacteria. A marine sponge tissue was directly used as inoculum and the results were compared with the data obtained through the direct plating isolation method. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC‐PCR) genomic fingerprinting indicated the isolation of four bioactive strains, three of them producers of a pederin‐like compound, and the fourth one able to synthesize a different compound, still unidentified, rendered by the DTE approach, in comparison with one bioactive strain identified through the plating method. Analyses based on the 16S rRNA gene data showed the existence of two different species belonging to the genus Labrenzia. The efficiency and diversity ratio in the number of isolates and compounds are discussed. In view of the results, the proposed DTE approach proved to be efficient for the isolation of new cytotoxic compounds of marine origin and pave the way for future potential applications. |
format | Online Article Text |
id | pubmed-7888454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78884542021-02-26 Detection of a pederin‐like compound using a dilution‐to‐extinction‐based platform for the isolation of marine bacteria in drug discovery strategies Benítez, Xulio Gonzalez, Elena G. García, Jesus Zúñiga, Paz de la Calle, Fernando Cuevas, Carmen Microb Biotechnol Research Articles The continued development of culturing technologies for the discovery of new molecules from marine microbes is of paramount importance for drug discovery. Coupled with this, the use of the high‐throughput approach shows promise for increasing the number of Gram‐negative and non‐filamentous bacteria cultures that can be surveyed, since they show a lower potential of bioactivity. In this work, we propose a new strategy of high‐throughput cultivation of bacteria inspired by a dilution‐to‐extinction (DTE) methodology for the isolation of, and screening for, new cytotoxic compound producing marine bacteria. A marine sponge tissue was directly used as inoculum and the results were compared with the data obtained through the direct plating isolation method. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC‐PCR) genomic fingerprinting indicated the isolation of four bioactive strains, three of them producers of a pederin‐like compound, and the fourth one able to synthesize a different compound, still unidentified, rendered by the DTE approach, in comparison with one bioactive strain identified through the plating method. Analyses based on the 16S rRNA gene data showed the existence of two different species belonging to the genus Labrenzia. The efficiency and diversity ratio in the number of isolates and compounds are discussed. In view of the results, the proposed DTE approach proved to be efficient for the isolation of new cytotoxic compounds of marine origin and pave the way for future potential applications. John Wiley and Sons Inc. 2020-10-23 /pmc/articles/PMC7888454/ /pubmed/33094913 http://dx.doi.org/10.1111/1751-7915.13679 Text en © 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Benítez, Xulio Gonzalez, Elena G. García, Jesus Zúñiga, Paz de la Calle, Fernando Cuevas, Carmen Detection of a pederin‐like compound using a dilution‐to‐extinction‐based platform for the isolation of marine bacteria in drug discovery strategies |
title | Detection of a pederin‐like compound using a dilution‐to‐extinction‐based platform for the isolation of marine bacteria in drug discovery strategies |
title_full | Detection of a pederin‐like compound using a dilution‐to‐extinction‐based platform for the isolation of marine bacteria in drug discovery strategies |
title_fullStr | Detection of a pederin‐like compound using a dilution‐to‐extinction‐based platform for the isolation of marine bacteria in drug discovery strategies |
title_full_unstemmed | Detection of a pederin‐like compound using a dilution‐to‐extinction‐based platform for the isolation of marine bacteria in drug discovery strategies |
title_short | Detection of a pederin‐like compound using a dilution‐to‐extinction‐based platform for the isolation of marine bacteria in drug discovery strategies |
title_sort | detection of a pederin‐like compound using a dilution‐to‐extinction‐based platform for the isolation of marine bacteria in drug discovery strategies |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888454/ https://www.ncbi.nlm.nih.gov/pubmed/33094913 http://dx.doi.org/10.1111/1751-7915.13679 |
work_keys_str_mv | AT benitezxulio detectionofapederinlikecompoundusingadilutiontoextinctionbasedplatformfortheisolationofmarinebacteriaindrugdiscoverystrategies AT gonzalezelenag detectionofapederinlikecompoundusingadilutiontoextinctionbasedplatformfortheisolationofmarinebacteriaindrugdiscoverystrategies AT garciajesus detectionofapederinlikecompoundusingadilutiontoextinctionbasedplatformfortheisolationofmarinebacteriaindrugdiscoverystrategies AT zunigapaz detectionofapederinlikecompoundusingadilutiontoextinctionbasedplatformfortheisolationofmarinebacteriaindrugdiscoverystrategies AT delacallefernando detectionofapederinlikecompoundusingadilutiontoextinctionbasedplatformfortheisolationofmarinebacteriaindrugdiscoverystrategies AT cuevascarmen detectionofapederinlikecompoundusingadilutiontoextinctionbasedplatformfortheisolationofmarinebacteriaindrugdiscoverystrategies |