Cargando…
Increased sensitivity using real-time dPCR for detection of SARS-CoV-2
A real-time dPCR system was developed to improve the sensitivity, specificity and quantification accuracy of end point dPCR. We compared three technologies – real-time qPCR, end point dPCR and real-time dPCR – in the context of SARS-CoV-2. Some improvement in limit of detection was obtained with end...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Future Science Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888512/ https://www.ncbi.nlm.nih.gov/pubmed/33222514 http://dx.doi.org/10.2144/btn-2020-0133 |
Sumario: | A real-time dPCR system was developed to improve the sensitivity, specificity and quantification accuracy of end point dPCR. We compared three technologies – real-time qPCR, end point dPCR and real-time dPCR – in the context of SARS-CoV-2. Some improvement in limit of detection was obtained with end point dPCR compared with real-time qPCR, and the limit of detection was further improved with the newly developed real-time dPCR technology through removal of false-positive signals. Real-time dPCR showed increased linear dynamic range compared with end point dPCR based on quantitation from amplification curves. Real-time dPCR can improve the performance of TaqMan assays beyond real-time qPCR and end point dPCR with better sensitivity and specificity, absolute quantification and a wider linear range of detection. |
---|