Cargando…
End-to-end neural system identification with neural information flow
Neural information flow (NIF) provides a novel approach for system identification in neuroscience. It models the neural computations in multiple brain regions and can be trained end-to-end via stochastic gradient descent from noninvasive data. NIF models represent neural information processing via a...
Autores principales: | Seeliger, K., Ambrogioni, L., Güçlütürk, Y., van den Bulk, L. M., Güçlü, U., van Gerven, M. A. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888598/ https://www.ncbi.nlm.nih.gov/pubmed/33539366 http://dx.doi.org/10.1371/journal.pcbi.1008558 |
Ejemplares similares
-
Brain2Pix: Fully convolutional naturalistic video frame reconstruction from brain activity
por: Le, Lynn, et al.
Publicado: (2022) -
Hyperrealistic neural decoding for reconstructing faces from fMRI activations via the GAN latent space
por: Dado, Thirza, et al.
Publicado: (2022) -
End-to-end optimization of prosthetic vision
por: de Ruyter van Steveninck, Jaap, et al.
Publicado: (2022) -
Dynamic decomposition of spatiotemporal neural signals
por: Ambrogioni, Luca, et al.
Publicado: (2017) -
Neural dynamics of perceptual inference and its reversal during imagery
por: Dijkstra, Nadine, et al.
Publicado: (2020)