Cargando…
Microrheology reveals simultaneous cell-mediated matrix stiffening and fluidization that underlie breast cancer invasion
Living tissues embody a unique class of hybrid materials in which active and thermal forces are inextricably linked. Mechanical characterization of tissues demands descriptors that respect this hybrid nature. In this work, we develop a microrheology-based force spectrum analysis (FSA) technique to d...
Autores principales: | Krajina, Brad A., LeSavage, Bauer L., Roth, Julien G., Zhu, Audrey W., Cai, Pamela C., Spakowitz, Andrew J., Heilshorn, Sarah C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888921/ https://www.ncbi.nlm.nih.gov/pubmed/33597244 http://dx.doi.org/10.1126/sciadv.abe1969 |
Ejemplares similares
-
Dynamic Light Scattering Microrheology Reveals Multiscale
Viscoelasticity of Polymer Gels and Precious Biological Materials
por: Krajina, Brad A., et al.
Publicado: (2017) -
Bioprinting Cell- and Spheroid-Laden Protein-Engineered Hydrogels as Tissue-on-Chip Platforms
por: Duarte Campos, Daniela F., et al.
Publicado: (2020) -
Tunable hydrogel viscoelasticity modulates human neural maturation
por: Roth, Julien G., et al.
Publicado: (2023) -
Matrix Remodeling Enhances the Differentiation Capacity of Neural Progenitor Cells in 3D Hydrogels
por: Madl, Christopher M., et al.
Publicado: (2019) -
Magnetic probe-based microrheology reveals local softening and stiffening of 3D collagen matrices by fibroblasts
por: Pokki, Juho, et al.
Publicado: (2021)