Cargando…
Atypical PKCs activate Vimentin to facilitate prostate cancer cell motility and invasion
Atypical protein kinase C (aPKC) are involved in progression of many human cancers. Vimentin is expressed during epithelial to mesenchymal transition (EMT). Molecular dynamics of Vimentin intermediate filaments (VIFs) play a key role in metastasis. This article is an effort to provide thorough under...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889213/ https://www.ncbi.nlm.nih.gov/pubmed/33525953 http://dx.doi.org/10.1080/19336918.2021.1882782 |
Sumario: | Atypical protein kinase C (aPKC) are involved in progression of many human cancers. Vimentin is expressed during epithelial to mesenchymal transition (EMT). Molecular dynamics of Vimentin intermediate filaments (VIFs) play a key role in metastasis. This article is an effort to provide thorough understanding of the relationship between Vimentin and aPKCs . We demonstrate that diminution of aPKCs lead to attenuate prostate cellular metastasis through the downregulation of Vimentin expression. siRNA knocked-down SNAIL1 and PRRX1 reduce aPKC activity along with Vimentin. Results suggest that aPKCs target multiple activation sites (Ser33/39/56) on Vimentin and therefore is essential for VIF dynamics regulation during the metastasis of prostate cancer cells. Understanding the aPKC related molecular mechanisms may provide a novel therapeutic path for prostate carcinoma. |
---|