Cargando…
Application of machine learning in understanding atherosclerosis: Emerging insights
Biological processes are incredibly complex—integrating molecular signaling networks involved in multicellular communication and function, thus maintaining homeostasis. Dysfunction of these processes can result in the disruption of homeostasis, leading to the development of several disease processes...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889295/ https://www.ncbi.nlm.nih.gov/pubmed/33644628 http://dx.doi.org/10.1063/5.0028986 |
Sumario: | Biological processes are incredibly complex—integrating molecular signaling networks involved in multicellular communication and function, thus maintaining homeostasis. Dysfunction of these processes can result in the disruption of homeostasis, leading to the development of several disease processes including atherosclerosis. We have significantly advanced our understanding of bioprocesses in atherosclerosis, and in doing so, we are beginning to appreciate the complexities, intricacies, and heterogeneity atherosclerosi. We are also now better equipped to acquire, store, and process the vast amount of biological data needed to shed light on the biological circuitry involved. Such data can be analyzed within machine learning frameworks to better tease out such complex relationships. Indeed, there has been an increasing number of studies applying machine learning methods for patient risk stratification based on comorbidities, multi-modality image processing, and biomarker discovery pertaining to atherosclerotic plaque formation. Here, we focus on current applications of machine learning to provide insight into atherosclerotic plaque formation and better understand atherosclerotic plaque progression in patients with cardiovascular disease. |
---|