Cargando…
Application of machine learning in understanding atherosclerosis: Emerging insights
Biological processes are incredibly complex—integrating molecular signaling networks involved in multicellular communication and function, thus maintaining homeostasis. Dysfunction of these processes can result in the disruption of homeostasis, leading to the development of several disease processes...
Autores principales: | Munger, Eric, Hickey, John W., Dey, Amit K., Jafri, Mohsin Saleet, Kinser, Jason M., Mehta, Nehal N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889295/ https://www.ncbi.nlm.nih.gov/pubmed/33644628 http://dx.doi.org/10.1063/5.0028986 |
Ejemplares similares
-
Protein–Protein Interaction Network Extraction Using Text Mining Methods Adds Insight into Autism Spectrum Disorder
por: Nezamuldeen, Leena, et al.
Publicado: (2023) -
Optimizing peptide inhibitors of SARS-Cov-2 nsp10/nsp16 methyltransferase predicted through molecular simulation and machine learning
por: Hamre, John R., et al.
Publicado: (2022) -
The Role of Ca(2+) Sparks in Force Frequency Relationships in Guinea Pig Ventricular Myocytes
por: Paudel, Roshan, et al.
Publicado: (2022) -
Pacing Dynamics Determines the Arrhythmogenic Mechanism of the CPVT2-Causing CASQ2(G112+5X) Mutation in a Guinea Pig Ventricular Myocyte Computational Model
por: Paudel, Roshan, et al.
Publicado: (2022) -
Data Mining of Molecular Simulations Suggest Key Amino Acid Residues for Aggregation, Signaling and Drug Action
por: Gurunathan, Vaibhav, et al.
Publicado: (2021)