Cargando…
Drug-Target Interaction Prediction Based on Adversarial Bayesian Personalized Ranking
The prediction of drug-target interaction (DTI) is a key step in drug repositioning. In recent years, many studies have tried to use matrix factorization to predict DTI, but they only use known DTIs and ignore the features of drug and target expression profiles, resulting in limited prediction perfo...
Autores principales: | Ye, Yihua, Wen, Yuqi, Zhang, Zhongnan, He, Song, Bo, Xiaochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889346/ https://www.ncbi.nlm.nih.gov/pubmed/33628808 http://dx.doi.org/10.1155/2021/6690154 |
Ejemplares similares
-
Deep learning-based transcriptome data classification for drug-target interaction prediction
por: Xie, Lingwei, et al.
Publicado: (2018) -
Discovery of novel therapeutic properties of drugs from transcriptional responses based on multi-label classification
por: Xie, Lingwei, et al.
Publicado: (2017) -
NeuRank: learning to rank with neural networks for drug–target interaction prediction
por: Wu, Xiujin, et al.
Publicado: (2021) -
DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank
por: Yuan, Qingjun, et al.
Publicado: (2016) -
MOCSS: Multi-omics data clustering and cancer subtyping via shared and specific representation learning
por: Chen, Yuxin, et al.
Publicado: (2023)