Cargando…
Identifying Stage II Colorectal Cancer Recurrence Associated Genes by Microarray Meta-Analysis and Building Predictive Models with Machine Learning Algorithms
BACKGROUND: Stage II colorectal cancer patients had heterogeneous prognosis, and patients with recurrent events had poor survival. In this study, we aimed to identify stage II colorectal cancer recurrence associated genes by microarray meta-analysis and build predictive models to stratify patients...
Autores principales: | Lu, Wei, Pan, Xiang, Dai, Siqi, Fu, Dongliang, Hwang, Maxwell, Zhu, Yingshuang, Zhang, Lina, Wei, Jingsun, Kong, Xiangxing, Li, Jun, Xiao, Qian, Ding, Kefeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889382/ https://www.ncbi.nlm.nih.gov/pubmed/33628243 http://dx.doi.org/10.1155/2021/6657397 |
Ejemplares similares
-
FOLFOX treatment response prediction in metastatic or recurrent colorectal cancer patients via machine learning algorithms
por: Lu, Wei, et al.
Publicado: (2020) -
Prognostic Risk Model of Immune-Related Genes in Colorectal Cancer
por: Qian, Yucheng, et al.
Publicado: (2021) -
A predictive model for early recurrence of colorectal-cancer liver metastases based on clinical parameters
por: Dai, Siqi, et al.
Publicado: (2021) -
The Disulfiram/Copper Complex Induces Autophagic Cell Death in Colorectal Cancer by Targeting ULK1
por: Hu, Yeting, et al.
Publicado: (2021) -
Establishment of a Risk Signature Based on m6A RNA Methylation Regulators That Predicts Poor Prognosis in Renal Cell Carcinoma
por: Wei, Jingsun, et al.
Publicado: (2021)