Cargando…

An integrated virtual screening of compounds from Carica papaya leaves against multiple protein targets of SARS-Coronavirus-2

The pandemic of SARS-Coronavirus-2 (Coronavirus-19) has been progressing by the increasing trend of the cases as well as deaths with neither vaccine nor drug is rationally used to stop the viral spread over. This study aims to perform an integrated virtual screening of compounds that had been identi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hariyono, Pandu, Patramurti, Christine, Candrasari, Damiana S., Hariono, Maywan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889459/
https://www.ncbi.nlm.nih.gov/pubmed/33619449
http://dx.doi.org/10.1016/j.rechem.2021.100113
Descripción
Sumario:The pandemic of SARS-Coronavirus-2 (Coronavirus-19) has been progressing by the increasing trend of the cases as well as deaths with neither vaccine nor drug is rationally used to stop the viral spread over. This study aims to perform an integrated virtual screening of compounds that had been identified from Carica papaya leaves, which are proposed to be a herbal treatment for SARS-Coronavirus-2. The screening was initiated by evaluating the 40 compounds from Carica papaya leaves for their drug-like likeness property. The selected compounds were then secondly screened using carcinogenic and toxicity filters. Further selected compounds were thirdly screened for their pharmacokinetic profile and the screening was lastly performed by docking the third selected compounds against multiple protein targets of SARS-Coronavirus-2 employing 3-chymotrypsin-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent-RNA-polymerase (RdRp), endonuclease (EndoU), S1 and S2 region of spike protein. The results show that 20 of 40 compounds, which meet the requirements of drug-like likeness, carcinogenicity-toxicity filter, and pharmacokinetic profiles, can interact with the multiple protein targets of SARS-Coronavirus-2 with the order from high to low affinity as follows: S1 > 3CLpro > EndoU > RdRp > PLpro > S2. In conclusion, Carica papaya leaves are worth to be proposed for further in vitro study against SARS-Coronavirus-2 at both molecular and cellular levels.