Cargando…

Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions

Liquid–liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellula...

Descripción completa

Detalles Bibliográficos
Autores principales: Krainer, Georg, Welsh, Timothy J., Joseph, Jerelle A., Espinosa, Jorge R., Wittmann, Sina, de Csilléry, Ella, Sridhar, Akshay, Toprakcioglu, Zenon, Gudiškytė, Giedre, Czekalska, Magdalena A., Arter, William E., Guillén-Boixet, Jordina, Franzmann, Titus M., Qamar, Seema, George-Hyslop, Peter St, Hyman, Anthony A., Collepardo-Guevara, Rosana, Alberti, Simon, Knowles, Tuomas P. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889641/
https://www.ncbi.nlm.nih.gov/pubmed/33597515
http://dx.doi.org/10.1038/s41467-021-21181-9
_version_ 1783652353051721728
author Krainer, Georg
Welsh, Timothy J.
Joseph, Jerelle A.
Espinosa, Jorge R.
Wittmann, Sina
de Csilléry, Ella
Sridhar, Akshay
Toprakcioglu, Zenon
Gudiškytė, Giedre
Czekalska, Magdalena A.
Arter, William E.
Guillén-Boixet, Jordina
Franzmann, Titus M.
Qamar, Seema
George-Hyslop, Peter St
Hyman, Anthony A.
Collepardo-Guevara, Rosana
Alberti, Simon
Knowles, Tuomas P. J.
author_facet Krainer, Georg
Welsh, Timothy J.
Joseph, Jerelle A.
Espinosa, Jorge R.
Wittmann, Sina
de Csilléry, Ella
Sridhar, Akshay
Toprakcioglu, Zenon
Gudiškytė, Giedre
Czekalska, Magdalena A.
Arter, William E.
Guillén-Boixet, Jordina
Franzmann, Titus M.
Qamar, Seema
George-Hyslop, Peter St
Hyman, Anthony A.
Collepardo-Guevara, Rosana
Alberti, Simon
Knowles, Tuomas P. J.
author_sort Krainer, Georg
collection PubMed
description Liquid–liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellular proteins, which form condensates at low salt concentrations, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that this reentrant phase transition in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus sheds light on the cooperation of hydrophobic and non-ionic interactions as general driving forces in the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.
format Online
Article
Text
id pubmed-7889641
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78896412021-03-03 Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions Krainer, Georg Welsh, Timothy J. Joseph, Jerelle A. Espinosa, Jorge R. Wittmann, Sina de Csilléry, Ella Sridhar, Akshay Toprakcioglu, Zenon Gudiškytė, Giedre Czekalska, Magdalena A. Arter, William E. Guillén-Boixet, Jordina Franzmann, Titus M. Qamar, Seema George-Hyslop, Peter St Hyman, Anthony A. Collepardo-Guevara, Rosana Alberti, Simon Knowles, Tuomas P. J. Nat Commun Article Liquid–liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellular proteins, which form condensates at low salt concentrations, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that this reentrant phase transition in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus sheds light on the cooperation of hydrophobic and non-ionic interactions as general driving forces in the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates. Nature Publishing Group UK 2021-02-17 /pmc/articles/PMC7889641/ /pubmed/33597515 http://dx.doi.org/10.1038/s41467-021-21181-9 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Krainer, Georg
Welsh, Timothy J.
Joseph, Jerelle A.
Espinosa, Jorge R.
Wittmann, Sina
de Csilléry, Ella
Sridhar, Akshay
Toprakcioglu, Zenon
Gudiškytė, Giedre
Czekalska, Magdalena A.
Arter, William E.
Guillén-Boixet, Jordina
Franzmann, Titus M.
Qamar, Seema
George-Hyslop, Peter St
Hyman, Anthony A.
Collepardo-Guevara, Rosana
Alberti, Simon
Knowles, Tuomas P. J.
Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions
title Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions
title_full Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions
title_fullStr Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions
title_full_unstemmed Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions
title_short Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions
title_sort reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889641/
https://www.ncbi.nlm.nih.gov/pubmed/33597515
http://dx.doi.org/10.1038/s41467-021-21181-9
work_keys_str_mv AT krainergeorg reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT welshtimothyj reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT josephjerellea reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT espinosajorger reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT wittmannsina reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT decsilleryella reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT sridharakshay reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT toprakciogluzenon reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT gudiskytegiedre reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT czekalskamagdalenaa reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT arterwilliame reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT guillenboixetjordina reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT franzmanntitusm reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT qamarseema reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT georgehysloppeterst reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT hymananthonya reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT collepardoguevararosana reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT albertisimon reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions
AT knowlestuomaspj reentrantliquidcondensatephaseofproteinsisstabilizedbyhydrophobicandnonionicinteractions