Cargando…

Population-specific causal disease effect sizes in functionally important regions impacted by selection

Many diseases exhibit population-specific causal effect sizes with trans-ethnic genetic correlations significantly less than 1, limiting trans-ethnic polygenic risk prediction. We develop a new method, S-LDXR, for stratifying squared trans-ethnic genetic correlation across genomic annotations, and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Huwenbo, Gazal, Steven, Kanai, Masahiro, Koch, Evan M., Schoech, Armin P., Siewert, Katherine M., Kim, Samuel S., Luo, Yang, Amariuta, Tiffany, Huang, Hailiang, Okada, Yukinori, Raychaudhuri, Soumya, Sunyaev, Shamil R., Price, Alkes L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889654/
https://www.ncbi.nlm.nih.gov/pubmed/33597505
http://dx.doi.org/10.1038/s41467-021-21286-1
Descripción
Sumario:Many diseases exhibit population-specific causal effect sizes with trans-ethnic genetic correlations significantly less than 1, limiting trans-ethnic polygenic risk prediction. We develop a new method, S-LDXR, for stratifying squared trans-ethnic genetic correlation across genomic annotations, and apply S-LDXR to genome-wide summary statistics for 31 diseases and complex traits in East Asians (average N = 90K) and Europeans (average N = 267K) with an average trans-ethnic genetic correlation of 0.85. We determine that squared trans-ethnic genetic correlation is 0.82× (s.e. 0.01) depleted in the top quintile of background selection statistic, implying more population-specific causal effect sizes. Accordingly, causal effect sizes are more population-specific in functionally important regions, including conserved and regulatory regions. In regions surrounding specifically expressed genes, causal effect sizes are most population-specific for skin and immune genes, and least population-specific for brain genes. Our results could potentially be explained by stronger gene-environment interaction at loci impacted by selection, particularly positive selection.