Cargando…
Automatic classification of canine thoracic radiographs using deep learning
The interpretation of thoracic radiographs is a challenging and error-prone task for veterinarians. Despite recent advancements in machine learning and computer vision, the development of computer-aided diagnostic systems for radiographs remains a challenging and unsolved problem, particularly in th...
Autores principales: | Banzato, Tommaso, Wodzinski, Marek, Burti, Silvia, Osti, Valentina Longhin, Rossoni, Valentina, Atzori, Manfredo, Zotti, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889925/ https://www.ncbi.nlm.nih.gov/pubmed/33597566 http://dx.doi.org/10.1038/s41598-021-83515-3 |
Ejemplares similares
-
An AI-based algorithm for the automatic evaluation of image quality in canine thoracic radiographs
por: Banzato, Tommaso, et al.
Publicado: (2023) -
Improving the classification of veterinary thoracic radiographs through inter-species and inter-pathology self-supervised pre-training of deep learning models
por: Celniak, Weronika, et al.
Publicado: (2023) -
An AI-Based Algorithm for the Automatic Classification of Thoracic Radiographs in Cats
por: Banzato, Tommaso, et al.
Publicado: (2021) -
Development of an artificial intelligence-based method for the diagnosis of the severity of myxomatous mitral valve disease from canine chest radiographs
por: Valente, Carlotta, et al.
Publicado: (2023) -
A Machine Learning-Based Approach for Classification of Focal Splenic Lesions Based on Their CT Features
por: Burti, Silvia, et al.
Publicado: (2022)