Cargando…
Prediction of Pathological Upgrading at Radical Prostatectomy in Prostate Cancer Eligible for Active Surveillance: A Texture Features and Machine Learning-Based Analysis of Apparent Diffusion Coefficient Maps
OBJECTIVE: To evaluate a combination of texture features and machine learning-based analysis of apparent diffusion coefficient (ADC) maps for the prediction of Grade Group (GG) upgrading in Gleason score (GS) ≤6 prostate cancer (PCa) (GG1) and GS 3 + 4 PCa (GG2). MATERIALS AND METHODS: Fifty-nine pa...
Autores principales: | Xie, Jinke, Li, Basen, Min, Xiangde, Zhang, Peipei, Fan, Chanyuan, Li, Qiubai, Wang, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890009/ https://www.ncbi.nlm.nih.gov/pubmed/33614487 http://dx.doi.org/10.3389/fonc.2020.604266 |
Ejemplares similares
-
Value of Intra-Perinodular Textural Transition Features from MRI in Distinguishing Between Benign and Malignant Testicular Lesions
por: Zhang, Peipei, et al.
Publicado: (2021) -
Prediction of different stages of rectal cancer: Texture analysis based on diffusion-weighted images and apparent diffusion coefficient maps
por: Yin, Jian-Dong, et al.
Publicado: (2020) -
The trouble with apparent diffusion coefficient papers
por: Bourne, Roger M
Publicado: (2015) -
Surveillance Value of Apparent Diffusion Coefficient Maps: Multiparametric MRI in Active Surveillance of Prostate Cancer
por: Georgiev, Aleksandar, et al.
Publicado: (2023) -
Textural differences based on apparent diffusion coefficient maps for discriminating pT3 subclasses of rectal adenocarcinoma
por: Lu, Zhi-Hua, et al.
Publicado: (2021)