Cargando…
Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy
The treatment of patients with ERBB2 (HER2)-positive breast cancer with anti-ERBB2 therapy is based on the detection of ERBB2 gene amplification or protein overexpression. Machine learning (ML) algorithms can predict the amplification of ERBB2 based on tumor morphological features, but it is not kno...
Autores principales: | Bychkov, Dmitrii, Linder, Nina, Tiulpin, Aleksei, Kücükel, Hakan, Lundin, Mikael, Nordling, Stig, Sihto, Harri, Isola, Jorma, Lehtimäki, Tiina, Kellokumpu-Lehtinen, Pirkko-Liisa, von Smitten, Karl, Joensuu, Heikki, Lundin, Johan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890057/ https://www.ncbi.nlm.nih.gov/pubmed/33597560 http://dx.doi.org/10.1038/s41598-021-83102-6 |
Ejemplares similares
-
Outcome and biomarker supervised deep learning for survival prediction in two multicenter breast cancer series
por: Bychkov, Dmitrii, et al.
Publicado: (2022) -
Long-term prognosis of breast cancer detected by mammography screening or other methods
por: Lehtimäki, Tiina, et al.
Publicado: (2011) -
Breast cancer outcome prediction with tumour tissue images and machine learning
por: Turkki, Riku, et al.
Publicado: (2019) -
Development and evaluation of a virtual microscopy application for automated assessment of Ki-67 expression in breast cancer
por: Konsti, Juho, et al.
Publicado: (2011) -
Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study
por: Sihto, Harri, et al.
Publicado: (2011)