Cargando…
Dataset on performance of large-scale vanadium redox flow batteries with serpentine flow fields
The dataset presented in this article are related to research articles “Effect of electrolyte convection velocity in the electrode on the performance of vanadium redox flow battery cells with serpentine flow fields” [1] and “Effect of channel dimensions of serpentine flow fields on the performance o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890134/ https://www.ncbi.nlm.nih.gov/pubmed/33659594 http://dx.doi.org/10.1016/j.dib.2021.106835 |
_version_ | 1783652452438900736 |
---|---|
author | Gundlapalli, Ravendra Jayanti, Sreenivas |
author_facet | Gundlapalli, Ravendra Jayanti, Sreenivas |
author_sort | Gundlapalli, Ravendra |
collection | PubMed |
description | The dataset presented in this article are related to research articles “Effect of electrolyte convection velocity in the electrode on the performance of vanadium redox flow battery cells with serpentine flow fields” [1] and “Effect of channel dimensions of serpentine flow fields on the performance of a vanadium redox flow battery” [2]. The combined dataset on the pressure drop and electrochemical behavior of the vanadium flow battery cells with active areas of 400 cm(2), 900 cm(2) and 1500 cm(2) were obtained using battery life cycler for the circulation of vanadium electrolyte of concentration 1.61 M VOSO(4) dissolved in 5 M H(2)SO(4). The cells were designed with various combinations of flow-channel dimensions of serpentine flow field and the electrochemical performance has been obtained at various flow rates and current densities. In addition to the experimental data, computational fluid dynamics simulations have been performed to investigate the electrolyte distribution across the cell. The shared data enables the reader of research articles to delve into the life cycle behavior at various operating conditions and emphasize the importance of flow-channel dimensions, flow rate and uniform distribution of electrolyte in combating the concentration over-potential. |
format | Online Article Text |
id | pubmed-7890134 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-78901342021-03-02 Dataset on performance of large-scale vanadium redox flow batteries with serpentine flow fields Gundlapalli, Ravendra Jayanti, Sreenivas Data Brief Data Article The dataset presented in this article are related to research articles “Effect of electrolyte convection velocity in the electrode on the performance of vanadium redox flow battery cells with serpentine flow fields” [1] and “Effect of channel dimensions of serpentine flow fields on the performance of a vanadium redox flow battery” [2]. The combined dataset on the pressure drop and electrochemical behavior of the vanadium flow battery cells with active areas of 400 cm(2), 900 cm(2) and 1500 cm(2) were obtained using battery life cycler for the circulation of vanadium electrolyte of concentration 1.61 M VOSO(4) dissolved in 5 M H(2)SO(4). The cells were designed with various combinations of flow-channel dimensions of serpentine flow field and the electrochemical performance has been obtained at various flow rates and current densities. In addition to the experimental data, computational fluid dynamics simulations have been performed to investigate the electrolyte distribution across the cell. The shared data enables the reader of research articles to delve into the life cycle behavior at various operating conditions and emphasize the importance of flow-channel dimensions, flow rate and uniform distribution of electrolyte in combating the concentration over-potential. Elsevier 2021-02-04 /pmc/articles/PMC7890134/ /pubmed/33659594 http://dx.doi.org/10.1016/j.dib.2021.106835 Text en © 2021 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Data Article Gundlapalli, Ravendra Jayanti, Sreenivas Dataset on performance of large-scale vanadium redox flow batteries with serpentine flow fields |
title | Dataset on performance of large-scale vanadium redox flow batteries with serpentine flow fields |
title_full | Dataset on performance of large-scale vanadium redox flow batteries with serpentine flow fields |
title_fullStr | Dataset on performance of large-scale vanadium redox flow batteries with serpentine flow fields |
title_full_unstemmed | Dataset on performance of large-scale vanadium redox flow batteries with serpentine flow fields |
title_short | Dataset on performance of large-scale vanadium redox flow batteries with serpentine flow fields |
title_sort | dataset on performance of large-scale vanadium redox flow batteries with serpentine flow fields |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890134/ https://www.ncbi.nlm.nih.gov/pubmed/33659594 http://dx.doi.org/10.1016/j.dib.2021.106835 |
work_keys_str_mv | AT gundlapalliravendra datasetonperformanceoflargescalevanadiumredoxflowbatterieswithserpentineflowfields AT jayantisreenivas datasetonperformanceoflargescalevanadiumredoxflowbatterieswithserpentineflowfields |