Cargando…
Left Ventricular Torsion in Hypertension and Hypertensive Heart Failure ― 3-Dimensional Speckle Tracking Echocardiography Assessment ―
Background: Left ventricular (LV) torsion by contraction of inner and outer oblique muscles contributes to EF. Outer muscle plays a predominant role in torsion. We evaluated the impact of LV remodeling by hypertension (HTN) on torsion using 3-dimensional speckle tracking echocardiography (3D-STE). M...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japanese Circulation Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890276/ https://www.ncbi.nlm.nih.gov/pubmed/33693117 http://dx.doi.org/10.1253/circrep.CR-19-0001 |
Sumario: | Background: Left ventricular (LV) torsion by contraction of inner and outer oblique muscles contributes to EF. Outer muscle plays a predominant role in torsion. We evaluated the impact of LV remodeling by hypertension (HTN) on torsion using 3-dimensional speckle tracking echocardiography (3D-STE). Methods and Results: LV strain, strain rate during systole (SR-S) and torsion at endocardium, mid-wall and epicardium were assessed on 3D-STE in 53 controls and 186 HTN patients. Torsion was defined as the difference between apical and basal rotation divided by long axis length. LVEF and strain, SR-S and torsion in all 3 layers in HTN without LV hypertrophy (LVH) were similar to those in controls. LV longitudinal strain at endocardium in HTN with LVH decreased, whereas LVEF was similar to that in controls and, which was associated with increased torsion at epicardium. Reduced LVEF in hypertensive HF was associated with reduced strain, SR-S and torsion in all layers and with LV dilation. On multivariate analysis, epicardial torsion was an independent determinant of LVEF. At epicardial torsion cut-off 0.41, the sensitivity and specificity for the identification of HFrEF were 88% and 68%. Conclusions: Torsion on 3D-STE may represent a compensatory mechanism to maintain LVEF despite reduced endocardial function, suggesting that the deterioration of torsion caused by insult to outer muscle and dilation may lead to HFrEF. |
---|