Cargando…
Surrogate models based on machine learning methods for parameter estimation of left ventricular myocardium
A long-standing problem at the frontier of biomechanical studies is to develop fast methods capable of estimating material properties from clinical data. In this paper, we have studied three surrogate models based on machine learning (ML) methods for fast parameter estimation of left ventricular (LV...
Autores principales: | Cai, Li, Ren, Lei, Wang, Yongheng, Xie, Wenxian, Zhu, Guangyu, Gao, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890479/ https://www.ncbi.nlm.nih.gov/pubmed/33614068 http://dx.doi.org/10.1098/rsos.201121 |
Ejemplares similares
-
Efficient Ventricular Parameter Estimation Using AI-Surrogate Models
por: Maso Talou, Gonzalo D., et al.
Publicado: (2021) -
The Left Ventricular Myocardium in Hypoplastic Left Heart Syndrome
por: Chaudhry, Bill, et al.
Publicado: (2022) -
Automated Segmentation of Left Ventricular Myocardium on Cardiac Computed Tomography Using Deep Learning
por: Koo, Hyun Jung, et al.
Publicado: (2020) -
Parameter estimation in a Holzapfel–Ogden law for healthy myocardium
por: Gao, H., et al.
Publicado: (2015) -
The dependency of fetal left ventricular biomechanics function on myocardium helix angle configuration
por: Green, Laura, et al.
Publicado: (2022)