Cargando…
Data-driven prediction and origin identification of epidemics in population networks
Effective intervention strategies for epidemics rely on the identification of their origin and on the robustness of the predictions made by network disease models. We introduce a Bayesian uncertainty quantification framework to infer model parameters for a disease spreading on a network of communiti...
Autores principales: | Larson, Karen, Arampatzis, Georgios, Bowman, Clark, Chen, Zhizhong, Hadjidoukas, Panagiotis, Papadimitriou, Costas, Koumoutsakos, Petros, Matzavinos, Anastasios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890494/ https://www.ncbi.nlm.nih.gov/pubmed/33614060 http://dx.doi.org/10.1098/rsos.200531 |
Ejemplares similares
-
Detection of arterial wall abnormalities via Bayesian model selection
por: Larson, Karen, et al.
Publicado: (2019) -
Data driven inference for the repulsive exponent of the Lennard-Jones potential in molecular dynamics simulations
por: Kulakova, Lina, et al.
Publicado: (2017) -
Dissipative particle dynamics simulation of critical pore size in a lipid bilayer membrane
por: Bowman, Clark, et al.
Publicado: (2019) -
Optimal Flow Sensing for Schooling Swimmers
por: Weber, Pascal, et al.
Publicado: (2020) -
Bayesian selection for coarse-grained models of liquid water
por: Zavadlav, Julija, et al.
Publicado: (2019)