Cargando…
Correspondence between Monkey Visual Cortices and Layers of a Saliency Map Model Based on a Deep Convolutional Neural Network for Representations of Natural Images
Attentional selection is a function that allocates the brain’s computational resources to the most important part of a visual scene at a specific moment. Saliency map models have been proposed as computational models to predict attentional selection within a spatial location. Recent saliency map mod...
Autores principales: | Wagatsuma, Nobuhiko, Hidaka, Akinori, Tamura, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890521/ https://www.ncbi.nlm.nih.gov/pubmed/33234544 http://dx.doi.org/10.1523/ENEURO.0200-20.2020 |
Ejemplares similares
-
Analysis based on neural representation of natural object surfaces to elucidate the mechanisms of a trained AlexNet model
por: Wagatsuma, Nobuhiko, et al.
Publicado: (2022) -
Layer-Dependent Attentional Processing by Top-down Signals in a Visual Cortical Microcircuit Model
por: Wagatsuma, Nobuhiko, et al.
Publicado: (2011) -
Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Xu, Yaoda, et al.
Publicado: (2021) -
A novel fully convolutional network for visual saliency prediction
por: Ghariba, Bashir Muftah, et al.
Publicado: (2020) -
Publisher Correction: Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Xu, Yaoda, et al.
Publicado: (2021)