Cargando…
Development of a Surgical Sponge Counting System Using Radiographic Images
Background. Retention of surgical sponges in patients is a relatively frequent medical malpractice. To prevent it, the surgical sites are scanned using X-ray. However, using radiography in the operation room induces X-ray exposure for both patients and staff. To prevent such issues, a novel sponge c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890693/ https://www.ncbi.nlm.nih.gov/pubmed/32723214 http://dx.doi.org/10.1177/1553350620943349 |
_version_ | 1783652551237828608 |
---|---|
author | Kusuda, Kaori Yamashita, Kazuhiko Tanaka, Shinichi Tanaka, Kiyohito Ohta, Yuji |
author_facet | Kusuda, Kaori Yamashita, Kazuhiko Tanaka, Shinichi Tanaka, Kiyohito Ohta, Yuji |
author_sort | Kusuda, Kaori |
collection | PubMed |
description | Background. Retention of surgical sponges in patients is a relatively frequent medical malpractice. To prevent it, the surgical sites are scanned using X-ray. However, using radiography in the operation room induces X-ray exposure for both patients and staff. To prevent such issues, a novel sponge counting system was developed. Each surgical sponge used in common hospitals is composed of single radiopaque fibers. Methods. The proposed system scans surgical sponges to estimate their fiber length (EFL) and returns the number of it. In this study, an optimal image acquisition protocol was determined that allows an accurate count of sponges. X-ray doses and multi-angle image procedures were tested. Results. Measurement trials were performed and compared for both dry and blood-soaked sponges. As a result, the X-ray dose of 50 kV and 600 μA and the acquisition of 180 images per sample yielded an accurate EFL. The 180-image protocol achieved good performance in this study and allowed counting of one package of 10 sponges in 226 seconds. For these settings, a significant correlation was found between the actual number of sponges and the estimated fiber lengths. Additionally, the performance of the system was similar for either dry or blood-soaked items. Conclusion. The proposed system could accurately count surgical sponges and is a promising option in preventing the accidental retention of surgical sponges. |
format | Online Article Text |
id | pubmed-7890693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-78906932021-03-10 Development of a Surgical Sponge Counting System Using Radiographic Images Kusuda, Kaori Yamashita, Kazuhiko Tanaka, Shinichi Tanaka, Kiyohito Ohta, Yuji Surg Innov Innovative Technologies Background. Retention of surgical sponges in patients is a relatively frequent medical malpractice. To prevent it, the surgical sites are scanned using X-ray. However, using radiography in the operation room induces X-ray exposure for both patients and staff. To prevent such issues, a novel sponge counting system was developed. Each surgical sponge used in common hospitals is composed of single radiopaque fibers. Methods. The proposed system scans surgical sponges to estimate their fiber length (EFL) and returns the number of it. In this study, an optimal image acquisition protocol was determined that allows an accurate count of sponges. X-ray doses and multi-angle image procedures were tested. Results. Measurement trials were performed and compared for both dry and blood-soaked sponges. As a result, the X-ray dose of 50 kV and 600 μA and the acquisition of 180 images per sample yielded an accurate EFL. The 180-image protocol achieved good performance in this study and allowed counting of one package of 10 sponges in 226 seconds. For these settings, a significant correlation was found between the actual number of sponges and the estimated fiber lengths. Additionally, the performance of the system was similar for either dry or blood-soaked items. Conclusion. The proposed system could accurately count surgical sponges and is a promising option in preventing the accidental retention of surgical sponges. SAGE Publications 2020-07-29 2020-12 /pmc/articles/PMC7890693/ /pubmed/32723214 http://dx.doi.org/10.1177/1553350620943349 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Innovative Technologies Kusuda, Kaori Yamashita, Kazuhiko Tanaka, Shinichi Tanaka, Kiyohito Ohta, Yuji Development of a Surgical Sponge Counting System Using Radiographic Images |
title | Development of a Surgical Sponge Counting System Using Radiographic Images |
title_full | Development of a Surgical Sponge Counting System Using Radiographic Images |
title_fullStr | Development of a Surgical Sponge Counting System Using Radiographic Images |
title_full_unstemmed | Development of a Surgical Sponge Counting System Using Radiographic Images |
title_short | Development of a Surgical Sponge Counting System Using Radiographic Images |
title_sort | development of a surgical sponge counting system using radiographic images |
topic | Innovative Technologies |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890693/ https://www.ncbi.nlm.nih.gov/pubmed/32723214 http://dx.doi.org/10.1177/1553350620943349 |
work_keys_str_mv | AT kusudakaori developmentofasurgicalspongecountingsystemusingradiographicimages AT yamashitakazuhiko developmentofasurgicalspongecountingsystemusingradiographicimages AT tanakashinichi developmentofasurgicalspongecountingsystemusingradiographicimages AT tanakakiyohito developmentofasurgicalspongecountingsystemusingradiographicimages AT ohtayuji developmentofasurgicalspongecountingsystemusingradiographicimages |