Cargando…
Identification of mortality-risk-related missense variant for renal clear cell carcinoma using deep learning
INTRODUCTION: Kidney renal clear cell carcinoma (KIRCC) is a highly heterogeneous and lethal cancer that can arise in patients with renal disease. DeepSurv combines a deep feed-forward neural network with a Cox proportional hazards function and could provide optimized survival results compared with...
Autores principales: | Chen, Jin-Bor, Yang, Huai-Shuo, Moi, Sin-Hua, Chuang, Li-Yeh, Yang, Cheng-Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890720/ https://www.ncbi.nlm.nih.gov/pubmed/33643601 http://dx.doi.org/10.1177/2040622321992624 |
Ejemplares similares
-
Machine learning approaches for the mortality risk assessment of
patients undergoing hemodialysis
por: Yang, Cheng-Hong, et al.
Publicado: (2022) -
Higher-order clinical risk factor interaction analysis for overall mortality in maintenance hemodialysis patients
por: Yang, Cheng-Hong, et al.
Publicado: (2020) -
MVP predicts the pathogenicity of missense variants by deep learning
por: Qi, Hongjian, et al.
Publicado: (2021) -
An association between time-varying serum albumin level and the mortality rate in maintenance haemodialysis patients: a five-year clinical cohort study
por: Chen, Jin-Bor, et al.
Publicado: (2016) -
Accurate Prediction of Transcriptional Activity of Single Missense Variants in HIV Tat with Deep Learning
por: Derbel, Houssemeddine, et al.
Publicado: (2023)