Cargando…

Targeting Nrf2 may reverse the drug resistance in ovarian cancer

BACKGROUND: Acquired resistance to therapeutic drugs has become an important issue in treating ovarian cancer. Studies have shown that the prevalent chemotherapy resistance (cisplatin, paclitaxel etc.) for ovarian cancer occurs partly because of decreased production of reactive oxygen species within...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Danjie, Hong, Xiaoling, Zhao, Feijie, Ci, Xinxin, Zhang, Songling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890806/
https://www.ncbi.nlm.nih.gov/pubmed/33596893
http://dx.doi.org/10.1186/s12935-021-01822-1
Descripción
Sumario:BACKGROUND: Acquired resistance to therapeutic drugs has become an important issue in treating ovarian cancer. Studies have shown that the prevalent chemotherapy resistance (cisplatin, paclitaxel etc.) for ovarian cancer occurs partly because of decreased production of reactive oxygen species within the mitochondria of ovarian cancer cells. MAIN BODY: Nuclear erythroid-related factor-2 (Nrf2) mainly controls the regulation of transcription of genes through the Keap1-Nrf2-ARE signaling pathway and protects cells by fighting oxidative stress and defending against harmful substances. This protective effect is reflected in the promotion of tumor cell growth and their resistance to chemotherapy drugs. Therefore, inhibition of the Nrf2 pathway may reverse drug resistance. In this review, we describe the functions of Nrf2 in drug resistance based on Nrf2-associated signaling pathways determined in previous studies. CONCLUSIONS: Further studies on the relevant mechanisms of Nrf2 may help improve the outcomes of ovarian cancer therapy.