Cargando…
Machine learning-aided risk stratification in Philadelphia chromosome-positive acute lymphoblastic leukemia
We used the eXtreme Gradient Boosting algorithm, an optimized gradient boosting machine learning library, and established a model to predict events in Philadelphia chromosome-positive acute lymphoblastic leukemia using a machine learning-aided method. A model was constructed using a training set (80...
Autores principales: | Nishiwaki, Satoshi, Sugiura, Isamu, Koyama, Daisuke, Ozawa, Yukiyasu, Osaki, Masahide, Ishikawa, Yuichi, Kiyoi, Hitoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890949/ https://www.ncbi.nlm.nih.gov/pubmed/33602341 http://dx.doi.org/10.1186/s40364-021-00268-x |
Ejemplares similares
-
Multi-Lineage BCR-ABL Expression in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Is Associated With Improved Prognosis but No Specific Molecular Features
por: Nishiwaki, Satoshi, et al.
Publicado: (2020) -
High-risk Combinations of Additional Chromosomal Abnormalities in Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia: JALSG Ph+ALL TKI-SCT Study
por: Nishiwaki, Satoshi, et al.
Publicado: (2023) -
Autologous peripheral blood stem cell transplantation for Philadelphia chromosome‐positive acute lymphoblastic leukemia is safe but poses challenges for long‐term maintenance of molecular remission: Results of the Auto‐Ph17 study
por: Nishiwaki, Satoshi, et al.
Publicado: (2023) -
Efficacy and safety of autologous peripheral blood stem cell transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia: A study protocol for a multicenter exploratory prospective study (Auto-Ph17 study)
por: Nishiwaki, Satoshi, et al.
Publicado: (2017) -
Dasatinib-based 2-step induction for adults with Philadelphia chromosome–positive acute lymphoblastic leukemia
por: Sugiura, Isamu, et al.
Publicado: (2022)