Cargando…

iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks

The integration of single-cell RNA-sequencing datasets from multiple sources is critical for deciphering cell-to-cell heterogeneities and interactions in complex biological systems. We present a novel unsupervised batch effect removal framework, called iMAP, based on both deep autoencoders and gener...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dongfang, Hou, Siyu, Zhang, Lei, Wang, Xiliang, Liu, Baolin, Zhang, Zemin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891139/
https://www.ncbi.nlm.nih.gov/pubmed/33602306
http://dx.doi.org/10.1186/s13059-021-02280-8
Descripción
Sumario:The integration of single-cell RNA-sequencing datasets from multiple sources is critical for deciphering cell-to-cell heterogeneities and interactions in complex biological systems. We present a novel unsupervised batch effect removal framework, called iMAP, based on both deep autoencoders and generative adversarial networks. Compared with current methods, iMAP shows superior, robust, and scalable performance in terms of both reliably detecting the batch-specific cells and effectively mixing distributions of the batch-shared cell types. Applying iMAP to tumor microenvironment datasets from two platforms, Smart-seq2 and 10x Genomics, we find that iMAP can leverage the powers of both platforms to discover novel cell-cell interactions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02280-8.