Cargando…

In situ Surface Charge Density Visualization of Self‐assembled DNA Nanostructures after Ion Exchange

The charge density of DNA is a key parameter in strand hybridization and for the interactions occurring between DNA and molecules in biological systems. Due to the intricate structure of DNA, visualization of the surface charge density of DNA nanostructures under physiological conditions was not pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Møller Sønderskov, Steffan, Hyldgaard Klausen, Lasse, Amland Skaanvik, Sebastian, Han, Xiaojun, Dong, Mingdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891384/
https://www.ncbi.nlm.nih.gov/pubmed/32330354
http://dx.doi.org/10.1002/cphc.201901168
_version_ 1783652687291613184
author Møller Sønderskov, Steffan
Hyldgaard Klausen, Lasse
Amland Skaanvik, Sebastian
Han, Xiaojun
Dong, Mingdong
author_facet Møller Sønderskov, Steffan
Hyldgaard Klausen, Lasse
Amland Skaanvik, Sebastian
Han, Xiaojun
Dong, Mingdong
author_sort Møller Sønderskov, Steffan
collection PubMed
description The charge density of DNA is a key parameter in strand hybridization and for the interactions occurring between DNA and molecules in biological systems. Due to the intricate structure of DNA, visualization of the surface charge density of DNA nanostructures under physiological conditions was not previously possible. Here, we perform a simultaneous analysis of the topography and surface charge density of DNA nanostructures using atomic force microscopy and scanning ion conductance microscopy. The effect of in situ ion exchange using various alkali metal ions is tested with respect to the adsorption of DNA origami onto mica, and a quantitative study of surface charge density reveals ion exchange phenomena in mica as a key parameter in DNA adsorption. This is important for structure‐function studies of DNA nanostructures. The research provides an efficient approach to study surface charge density of DNA origami nanostructures and other biological molecules at a single molecule level.
format Online
Article
Text
id pubmed-7891384
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78913842021-03-02 In situ Surface Charge Density Visualization of Self‐assembled DNA Nanostructures after Ion Exchange Møller Sønderskov, Steffan Hyldgaard Klausen, Lasse Amland Skaanvik, Sebastian Han, Xiaojun Dong, Mingdong Chemphyschem Articles The charge density of DNA is a key parameter in strand hybridization and for the interactions occurring between DNA and molecules in biological systems. Due to the intricate structure of DNA, visualization of the surface charge density of DNA nanostructures under physiological conditions was not previously possible. Here, we perform a simultaneous analysis of the topography and surface charge density of DNA nanostructures using atomic force microscopy and scanning ion conductance microscopy. The effect of in situ ion exchange using various alkali metal ions is tested with respect to the adsorption of DNA origami onto mica, and a quantitative study of surface charge density reveals ion exchange phenomena in mica as a key parameter in DNA adsorption. This is important for structure‐function studies of DNA nanostructures. The research provides an efficient approach to study surface charge density of DNA origami nanostructures and other biological molecules at a single molecule level. John Wiley and Sons Inc. 2020-06-08 2020-07-02 /pmc/articles/PMC7891384/ /pubmed/32330354 http://dx.doi.org/10.1002/cphc.201901168 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Articles
Møller Sønderskov, Steffan
Hyldgaard Klausen, Lasse
Amland Skaanvik, Sebastian
Han, Xiaojun
Dong, Mingdong
In situ Surface Charge Density Visualization of Self‐assembled DNA Nanostructures after Ion Exchange
title In situ Surface Charge Density Visualization of Self‐assembled DNA Nanostructures after Ion Exchange
title_full In situ Surface Charge Density Visualization of Self‐assembled DNA Nanostructures after Ion Exchange
title_fullStr In situ Surface Charge Density Visualization of Self‐assembled DNA Nanostructures after Ion Exchange
title_full_unstemmed In situ Surface Charge Density Visualization of Self‐assembled DNA Nanostructures after Ion Exchange
title_short In situ Surface Charge Density Visualization of Self‐assembled DNA Nanostructures after Ion Exchange
title_sort in situ surface charge density visualization of self‐assembled dna nanostructures after ion exchange
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891384/
https://www.ncbi.nlm.nih.gov/pubmed/32330354
http://dx.doi.org/10.1002/cphc.201901168
work_keys_str_mv AT møllersønderskovsteffan insitusurfacechargedensityvisualizationofselfassembleddnananostructuresafterionexchange
AT hyldgaardklausenlasse insitusurfacechargedensityvisualizationofselfassembleddnananostructuresafterionexchange
AT amlandskaanviksebastian insitusurfacechargedensityvisualizationofselfassembleddnananostructuresafterionexchange
AT hanxiaojun insitusurfacechargedensityvisualizationofselfassembleddnananostructuresafterionexchange
AT dongmingdong insitusurfacechargedensityvisualizationofselfassembleddnananostructuresafterionexchange