Cargando…
Bayesian Gaussian distributional regression models for more efficient norm estimation
A test score on a psychological test is usually expressed as a normed score, representing its position relative to test scores in a reference population. These typically depend on predictor(s) such as age. The test score distribution conditional on predictors is estimated using regression, which may...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891623/ https://www.ncbi.nlm.nih.gov/pubmed/33128469 http://dx.doi.org/10.1111/bmsp.12206 |
_version_ | 1783652737883308032 |
---|---|
author | Voncken, Lieke Kneib, Thomas Albers, Casper J. Umlauf, Nikolaus Timmerman, Marieke E. |
author_facet | Voncken, Lieke Kneib, Thomas Albers, Casper J. Umlauf, Nikolaus Timmerman, Marieke E. |
author_sort | Voncken, Lieke |
collection | PubMed |
description | A test score on a psychological test is usually expressed as a normed score, representing its position relative to test scores in a reference population. These typically depend on predictor(s) such as age. The test score distribution conditional on predictors is estimated using regression, which may need large normative samples to estimate the relationships between the predictor(s) and the distribution characteristics properly. In this study, we examine to what extent this burden can be alleviated by using prior information in the estimation of new norms with Bayesian Gaussian distributional regression. In a simulation study, we investigate to what extent this norm estimation is more efficient and how robust it is to prior model deviations. We varied the prior type, prior misspecification and sample size. In our simulated conditions, using a fixed effects prior resulted in more efficient norm estimation than a weakly informative prior as long as the prior misspecification was not age dependent. With the proposed method and reasonable prior information, the same norm precision can be achieved with a smaller normative sample, at least in empirical problems similar to our simulated conditions. This may help test developers to achieve cost‐efficient high‐quality norms. The method is illustrated using empirical normative data from the IDS‐2 intelligence test. |
format | Online Article Text |
id | pubmed-7891623 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78916232021-03-02 Bayesian Gaussian distributional regression models for more efficient norm estimation Voncken, Lieke Kneib, Thomas Albers, Casper J. Umlauf, Nikolaus Timmerman, Marieke E. Br J Math Stat Psychol Original Articles A test score on a psychological test is usually expressed as a normed score, representing its position relative to test scores in a reference population. These typically depend on predictor(s) such as age. The test score distribution conditional on predictors is estimated using regression, which may need large normative samples to estimate the relationships between the predictor(s) and the distribution characteristics properly. In this study, we examine to what extent this burden can be alleviated by using prior information in the estimation of new norms with Bayesian Gaussian distributional regression. In a simulation study, we investigate to what extent this norm estimation is more efficient and how robust it is to prior model deviations. We varied the prior type, prior misspecification and sample size. In our simulated conditions, using a fixed effects prior resulted in more efficient norm estimation than a weakly informative prior as long as the prior misspecification was not age dependent. With the proposed method and reasonable prior information, the same norm precision can be achieved with a smaller normative sample, at least in empirical problems similar to our simulated conditions. This may help test developers to achieve cost‐efficient high‐quality norms. The method is illustrated using empirical normative data from the IDS‐2 intelligence test. John Wiley and Sons Inc. 2020-07-20 2021-02 /pmc/articles/PMC7891623/ /pubmed/33128469 http://dx.doi.org/10.1111/bmsp.12206 Text en © 2020 The Authors. British Journal of Mathematical and Statistical Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Voncken, Lieke Kneib, Thomas Albers, Casper J. Umlauf, Nikolaus Timmerman, Marieke E. Bayesian Gaussian distributional regression models for more efficient norm estimation |
title | Bayesian Gaussian distributional regression models for more efficient norm estimation |
title_full | Bayesian Gaussian distributional regression models for more efficient norm estimation |
title_fullStr | Bayesian Gaussian distributional regression models for more efficient norm estimation |
title_full_unstemmed | Bayesian Gaussian distributional regression models for more efficient norm estimation |
title_short | Bayesian Gaussian distributional regression models for more efficient norm estimation |
title_sort | bayesian gaussian distributional regression models for more efficient norm estimation |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891623/ https://www.ncbi.nlm.nih.gov/pubmed/33128469 http://dx.doi.org/10.1111/bmsp.12206 |
work_keys_str_mv | AT vonckenlieke bayesiangaussiandistributionalregressionmodelsformoreefficientnormestimation AT kneibthomas bayesiangaussiandistributionalregressionmodelsformoreefficientnormestimation AT alberscasperj bayesiangaussiandistributionalregressionmodelsformoreefficientnormestimation AT umlaufnikolaus bayesiangaussiandistributionalregressionmodelsformoreefficientnormestimation AT timmermanmariekee bayesiangaussiandistributionalregressionmodelsformoreefficientnormestimation |