Cargando…
Classification aware neural topic model for COVID-19 disinformation categorisation
The explosion of disinformation accompanying the COVID-19 pandemic has overloaded fact-checkers and media worldwide, and brought a new major challenge to government responses worldwide. Not only is disinformation creating confusion about medical science amongst citizens, but it is also amplifying di...
Autores principales: | Song, Xingyi, Petrak, Johann, Jiang, Ye, Singh, Iknoor, Maynard, Diana, Bontcheva, Kalina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891716/ https://www.ncbi.nlm.nih.gov/pubmed/33600477 http://dx.doi.org/10.1371/journal.pone.0247086 |
Ejemplares similares
-
Multistage BiCross encoder for multilingual access to COVID-19 health information
por: Singh, Iknoor, et al.
Publicado: (2021) -
Natural language processing for the semantic web
por: Maynard, Diana, et al.
Publicado: (2016) -
Comparative analysis of classification techniques for topic-based biomedical literature categorisation
por: Stepanov, Ihor, et al.
Publicado: (2023) -
Disinformation: A Bibliometric Review
por: Wang, Shixiong, et al.
Publicado: (2022) -
Disinformation: analysis and identification
por: Pathak, Archita, et al.
Publicado: (2021)