Cargando…

Multi-layer Representation Learning and Its Application to Electronic Health Records

Electronic Health Records (EHRs) are digital records associated with hospitalization, diagnosis, medications and so on. Secondary use of EHRs can promote the clinical informatics applications and the development of healthcare undertaking. EHRs have the unique characteristic where the patient visits...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Shan, Zheng, Xiangwei, Ji, Cun, Chen, Xuanchi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891814/
https://www.ncbi.nlm.nih.gov/pubmed/33623481
http://dx.doi.org/10.1007/s11063-021-10449-2
Descripción
Sumario:Electronic Health Records (EHRs) are digital records associated with hospitalization, diagnosis, medications and so on. Secondary use of EHRs can promote the clinical informatics applications and the development of healthcare undertaking. EHRs have the unique characteristic where the patient visits are temporally ordered but the diagnosis codes within a visit are randomly ordered. The hierarchical structure requires a multi-layer network to explore the different relational information of EHRs. In this paper, we propose a Multi-Layer Representation Learning method (MLRL), which is capable of learning effective patient representation by hierarchically exploring the valuable information in both diagnosis codes and patient visits. Firstly, MLRL utilizes the multi-head attention mechanism to explore the potential connections in diagnosis codes, and a linear transformation is implemented to further map the code vectors to non-negative real-valued representations. The initial visit vectors are then obtained by summarizing all the code representations. Secondly, the proposed method combines Bidirectional Long Short-Term Memory with self-attention mechanism to learn the weighted visit vectors which are aggregated to form the patient representation. Finally, to evaluate the performance of MLRL, we apply it to patient’s mortality prediction on real EHRs and the experimental results demonstrate that MLRL has a significant improvement in prediction performance. MLRL achieves around 0.915 in Area Under Curve which is superior to the results obtained by baseline methods. Furthermore, compared with raw data and other data representations, the learned representation with MLRL shows its outstanding results and availability on multiple different classifiers.