Cargando…

Optimization of Viable Glioblastoma Cryopreservation for Establishment of Primary Tumor Cell Cultures

Background: Technologies related to the establishment of primary tumor cell cultures from solid tumors, including glioblastoma, are increasingly important to oncology research and practice. However, processing of fresh tumor specimens for establishment of primary cultures on the day of surgical coll...

Descripción completa

Detalles Bibliográficos
Autores principales: Valyi-Nagy, Klara, Betsou, Fay, Susma, Alexandru, Valyi-Nagy, Tibor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc., publishers 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892309/
https://www.ncbi.nlm.nih.gov/pubmed/33107762
http://dx.doi.org/10.1089/bio.2020.0050
Descripción
Sumario:Background: Technologies related to the establishment of primary tumor cell cultures from solid tumors, including glioblastoma, are increasingly important to oncology research and practice. However, processing of fresh tumor specimens for establishment of primary cultures on the day of surgical collection is logistically difficult. The feasibility of viable cryopreservation of glioblastoma specimens, allowing for primary culture establishment weeks to months after surgical tumor collection and freezing, was demonstrated by Mullins et al. in 2013, with a success rate of 59% that was not significantly lower than that achieved with fresh tumor tissue. However, research targeting optimization of viable glioblastoma cryopreservation protocols for establishment of primary tumor cultures has been limited. Objectives: The objective of this study was to optimize glioblastoma cryopreservation methods for viable cryobanking and to determine if two-dimensional (2D) or three-dimensional (3D) culture conditions were more supportive of glioblastoma growth after thawing of frozen tumor specimens. Methods: Portions of eight human glioblastoma specimens were cryopreserved by four different protocols differing in the time of enzymatic digestion (before or after cryopreservation), and in the type of cryopreservation media (CryoStor CS10 or 10% dimethyl sulfoxide and 90% fetal calf serum). After 1 month, frozen tissues were thawed, enzymatically digested, if not digested before, and used for initiation of 2D or 3D primary tumor cultures to determine viability. Results: Among the tested cryopreservation and culturing protocols, the most efficient combinations of cryopreservation and culture were those associated with the use of CryoStor CS10 cryopreservation medium, enzymatic digestion before freezing, and 2D culturing after thawing with a successful culture rate of 8 out of 8 cases (100%). Two-dimensional cultures were in general more efficient for the support of tumor cell growth after thawing than 3D cultures. Conclusions: This study supports development of evidence-based viable glioblastoma cryopreservation methods for use in glioblastoma biobanking and research.