Cargando…

Machine-learning-enhanced time-of-flight mass spectrometry analysis

Mass spectrometry is a widespread approach used to work out what the constituents of a material are. Atoms and molecules are removed from the material and collected, and subsequently, a critical step is to infer their correct identities based on patterns formed in their mass-to-charge ratios and rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Ye, Varanasi, Rama Srinivas, Schwarz, Torsten, Gomell, Leonie, Zhao, Huan, Larson, David J., Sun, Binhan, Liu, Geng, Chen, Hao, Raabe, Dierk, Gault, Baptiste
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892357/
https://www.ncbi.nlm.nih.gov/pubmed/33659909
http://dx.doi.org/10.1016/j.patter.2020.100192
Descripción
Sumario:Mass spectrometry is a widespread approach used to work out what the constituents of a material are. Atoms and molecules are removed from the material and collected, and subsequently, a critical step is to infer their correct identities based on patterns formed in their mass-to-charge ratios and relative isotopic abundances. However, this identification step still mainly relies on individual users' expertise, making its standardization challenging, and hindering efficient data processing. Here, we introduce an approach that leverages modern machine learning technique to identify peak patterns in time-of-flight mass spectra within microseconds, outperforming human users without loss of accuracy. Our approach is cross-validated on mass spectra generated from different time-of-flight mass spectrometry (ToF-MS) techniques, offering the ToF-MS community an open-source, intelligent mass spectra analysis.