Cargando…
An interpretable deep-learning model for early prediction of sepsis in the emergency department
Sepsis is a life-threatening condition with high mortality rates and expensive treatment costs. Early prediction of sepsis improves survival in septic patients. In this paper, we report our top-performing method in the 2019 DII National Data Science Challenge to predict onset of sepsis 4 h before it...
Autores principales: | Zhang, Dongdong, Yin, Changchang, Hunold, Katherine M., Jiang, Xiaoqian, Caterino, Jeffrey M., Zhang, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892361/ https://www.ncbi.nlm.nih.gov/pubmed/33659912 http://dx.doi.org/10.1016/j.patter.2020.100196 |
Ejemplares similares
-
Diagnostic Uncertainty in Dyspneic Patients with Cancer in the Emergency Department
por: Hunold, Katherine M., et al.
Publicado: (2021) -
Combining structured and unstructured data for predictive models: a deep learning approach
por: Zhang, Dongdong, et al.
Publicado: (2020) -
Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram
por: Zhang, Dongdong, et al.
Publicado: (2021) -
Marrying Medical Domain Knowledge With Deep Learning on Electronic Health Records: A Deep Visual Analytics Approach
por: Li, Rui, et al.
Publicado: (2020) -
Shock Index and Early Recognition of Sepsis in the Emergency Department: Pilot Study
por: Berger, Tony, et al.
Publicado: (2013)