Cargando…
Decontextualized learning for interpretable hierarchical representations of visual patterns
Apart from discriminative modeling, the application of deep convolutional neural networks to basic research utilizing natural imaging data faces unique hurdles. Here, we present decontextualized hierarchical representation learning (DHRL), designed specifically to overcome these limitations. DHRL en...
Autores principales: | Etheredge, Robert Ian, Schartl, Manfred, Jordan, Alex |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892362/ https://www.ncbi.nlm.nih.gov/pubmed/33659910 http://dx.doi.org/10.1016/j.patter.2020.100193 |
Ejemplares similares
-
No Evidence for Memory Decontextualization across One Night of Sleep
por: Jurewicz, Katarzyna, et al.
Publicado: (2016) -
Poincaré Embeddings for Learning Hierarchical Representations
por: Nickel, Maximilian
Publicado: (2018) -
Sharpening of Hierarchical Visual Feature Representations of Blurred Images
por: Abdelhack, Mohamed, et al.
Publicado: (2018) -
Hierarchical Novelty-Familiarity Representation in the Visual System by Modular Predictive Coding
por: Vladimirskiy, Boris, et al.
Publicado: (2015) -
Editorial: Hierarchical Object Representations in the Visual Cortex and Computer Vision
por: Rodríguez-Sánchez, Antonio J., et al.
Publicado: (2015)