Cargando…
Head-to-head comparison of clustering methods for heterogeneous data: a simulation-driven benchmark
The choice of the most appropriate unsupervised machine-learning method for “heterogeneous” or “mixed” data, i.e. with both continuous and categorical variables, can be challenging. Our aim was to examine the performance of various clustering strategies for mixed data using both simulated and real-l...
Autores principales: | Preud’homme, Gregoire, Duarte, Kevin, Dalleau, Kevin, Lacomblez, Claire, Bresso, Emmanuel, Smaïl-Tabbone, Malika, Couceiro, Miguel, Devignes, Marie-Dominique, Kobayashi, Masatake, Huttin, Olivier, Ferreira, João Pedro, Zannad, Faiez, Rossignol, Patrick, Girerd, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892576/ https://www.ncbi.nlm.nih.gov/pubmed/33603019 http://dx.doi.org/10.1038/s41598-021-83340-8 |
Ejemplares similares
-
Diagnostic performance of congestion score index evaluated from chest radiography for acute heart failure in the emergency department: A retrospective analysis from the PARADISE cohort
por: Kobayashi, Masatake, et al.
Publicado: (2020) -
Correction: Diagnostic performance of congestion score index evaluated from chest radiography for acute heart failure in the emergency department: A retrospective analysis from the PARADISE cohort
por: Kobayashi, Masatake, et al.
Publicado: (2021) -
Discovering associations between adverse drug events using pattern structures and ontologies
por: Personeni, Gabin, et al.
Publicado: (2017) -
Integrative relational machine-learning for understanding drug side-effect profiles
por: Bresso, Emmanuel, et al.
Publicado: (2013) -
A Combination of Chest Radiography and Estimated Plasma Volume May Predict In-Hospital Mortality in Acute Heart Failure
por: Kobayashi, Masatake, et al.
Publicado: (2022)