Cargando…
Predicting Student Performance Using Machine Learning in fNIRS Data
Increasing student involvement in classes has always been a challenge for teachers and school managers. In online learning, some interactivity mechanisms like quizzes are increasingly used to engage students during classes and tasks. However, there is a high demand for tools that evaluate the effici...
Autores principales: | Oku, Amanda Yumi Ambriola, Sato, João Ricardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892769/ https://www.ncbi.nlm.nih.gov/pubmed/33613215 http://dx.doi.org/10.3389/fnhum.2021.622224 |
Ejemplares similares
-
Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms
por: Oku, Amanda Yumi Ambriola, et al.
Publicado: (2022) -
A New Statistical Approach for fNIRS Hyperscanning to Predict Brain Activity of Preschoolers’ Using Teacher’s
por: Barreto, Candida, et al.
Publicado: (2021) -
The Potential Role of fNIRS in Evaluating Levels of Consciousness
por: Abdalmalak, Androu, et al.
Publicado: (2021) -
Editorial: Techniques Advances and Clinical Applications in Fused EEG-fNIRS
por: Yuan, Zhen, et al.
Publicado: (2019) -
Signal Processing in fNIRS: A Case for the Removal of Systemic Activity for Single Trial Data
por: Klein, Franziska, et al.
Publicado: (2019)