Cargando…
Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring
Advances in nucleic acid sequencing technology have enabled expansion of our ability to profile microbial diversity. These large datasets of taxonomic and functional diversity are key to better understanding microbial ecology. Machine learning has proven to be a useful approach for analyzing microbi...
Autores principales: | Ghannam, Ryan B., Techtmann, Stephen M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892807/ https://www.ncbi.nlm.nih.gov/pubmed/33680353 http://dx.doi.org/10.1016/j.csbj.2021.01.028 |
Ejemplares similares
-
Biogeographic Patterns in Members of Globally Distributed and Dominant Taxa Found in Port Microbial Communities
por: Ghannam, Ryan B., et al.
Publicado: (2020) -
Impacts of dispersants on microbial communities and ecological systems
por: Techtmann, Stephen M., et al.
Publicado: (2023) -
Application of Ecological Network Theory to the Human Microbiome
por: Foster, James A., et al.
Publicado: (2008) -
Life on the fringe: microbial adaptation to growth on carbon monoxide
por: Robb, Frank T., et al.
Publicado: (2018) -
Machine learning and deep learning applications in microbiome research
por: Hernández Medina, Ricardo, et al.
Publicado: (2022)