Cargando…

Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets

The promise of quantum computing lies in harnessing programmable quantum devices for practical applications such as efficient simulation of quantum materials and condensed matter systems. One important task is the simulation of geometrically frustrated magnets in which topological phenomena can emer...

Descripción completa

Detalles Bibliográficos
Autores principales: King, Andrew D., Raymond, Jack, Lanting, Trevor, Isakov, Sergei V., Mohseni, Masoud, Poulin-Lamarre, Gabriel, Ejtemaee, Sara, Bernoudy, William, Ozfidan, Isil, Smirnov, Anatoly Yu., Reis, Mauricio, Altomare, Fabio, Babcock, Michael, Baron, Catia, Berkley, Andrew J., Boothby, Kelly, Bunyk, Paul I., Christiani, Holly, Enderud, Colin, Evert, Bram, Harris, Richard, Hoskinson, Emile, Huang, Shuiyuan, Jooya, Kais, Khodabandelou, Ali, Ladizinsky, Nicolas, Li, Ryan, Lott, P. Aaron, MacDonald, Allison J. R., Marsden, Danica, Marsden, Gaelen, Medina, Teresa, Molavi, Reza, Neufeld, Richard, Norouzpour, Mana, Oh, Travis, Pavlov, Igor, Perminov, Ilya, Prescott, Thomas, Rich, Chris, Sato, Yuki, Sheldan, Benjamin, Sterling, George, Swenson, Loren J., Tsai, Nicholas, Volkmann, Mark H., Whittaker, Jed D., Wilkinson, Warren, Yao, Jason, Neven, Hartmut, Hilton, Jeremy P., Ladizinsky, Eric, Johnson, Mark W., Amin, Mohammad H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892843/
https://www.ncbi.nlm.nih.gov/pubmed/33602927
http://dx.doi.org/10.1038/s41467-021-20901-5
_version_ 1783652933515083776
author King, Andrew D.
Raymond, Jack
Lanting, Trevor
Isakov, Sergei V.
Mohseni, Masoud
Poulin-Lamarre, Gabriel
Ejtemaee, Sara
Bernoudy, William
Ozfidan, Isil
Smirnov, Anatoly Yu.
Reis, Mauricio
Altomare, Fabio
Babcock, Michael
Baron, Catia
Berkley, Andrew J.
Boothby, Kelly
Bunyk, Paul I.
Christiani, Holly
Enderud, Colin
Evert, Bram
Harris, Richard
Hoskinson, Emile
Huang, Shuiyuan
Jooya, Kais
Khodabandelou, Ali
Ladizinsky, Nicolas
Li, Ryan
Lott, P. Aaron
MacDonald, Allison J. R.
Marsden, Danica
Marsden, Gaelen
Medina, Teresa
Molavi, Reza
Neufeld, Richard
Norouzpour, Mana
Oh, Travis
Pavlov, Igor
Perminov, Ilya
Prescott, Thomas
Rich, Chris
Sato, Yuki
Sheldan, Benjamin
Sterling, George
Swenson, Loren J.
Tsai, Nicholas
Volkmann, Mark H.
Whittaker, Jed D.
Wilkinson, Warren
Yao, Jason
Neven, Hartmut
Hilton, Jeremy P.
Ladizinsky, Eric
Johnson, Mark W.
Amin, Mohammad H.
author_facet King, Andrew D.
Raymond, Jack
Lanting, Trevor
Isakov, Sergei V.
Mohseni, Masoud
Poulin-Lamarre, Gabriel
Ejtemaee, Sara
Bernoudy, William
Ozfidan, Isil
Smirnov, Anatoly Yu.
Reis, Mauricio
Altomare, Fabio
Babcock, Michael
Baron, Catia
Berkley, Andrew J.
Boothby, Kelly
Bunyk, Paul I.
Christiani, Holly
Enderud, Colin
Evert, Bram
Harris, Richard
Hoskinson, Emile
Huang, Shuiyuan
Jooya, Kais
Khodabandelou, Ali
Ladizinsky, Nicolas
Li, Ryan
Lott, P. Aaron
MacDonald, Allison J. R.
Marsden, Danica
Marsden, Gaelen
Medina, Teresa
Molavi, Reza
Neufeld, Richard
Norouzpour, Mana
Oh, Travis
Pavlov, Igor
Perminov, Ilya
Prescott, Thomas
Rich, Chris
Sato, Yuki
Sheldan, Benjamin
Sterling, George
Swenson, Loren J.
Tsai, Nicholas
Volkmann, Mark H.
Whittaker, Jed D.
Wilkinson, Warren
Yao, Jason
Neven, Hartmut
Hilton, Jeremy P.
Ladizinsky, Eric
Johnson, Mark W.
Amin, Mohammad H.
author_sort King, Andrew D.
collection PubMed
description The promise of quantum computing lies in harnessing programmable quantum devices for practical applications such as efficient simulation of quantum materials and condensed matter systems. One important task is the simulation of geometrically frustrated magnets in which topological phenomena can emerge from competition between quantum and thermal fluctuations. Here we report on experimental observations of equilibration in such simulations, measured on up to 1440 qubits with microsecond resolution. By initializing the system in a state with topological obstruction, we observe quantum annealing (QA) equilibration timescales in excess of one microsecond. Measurements indicate a dynamical advantage in the quantum simulation compared with spatially local update dynamics of path-integral Monte Carlo (PIMC). The advantage increases with both system size and inverse temperature, exceeding a million-fold speedup over an efficient CPU implementation. PIMC is a leading classical method for such simulations, and a scaling advantage of this type was recently shown to be impossible in certain restricted settings. This is therefore an important piece of experimental evidence that PIMC does not simulate QA dynamics even for sign-problem-free Hamiltonians, and that near-term quantum devices can be used to accelerate computational tasks of practical relevance.
format Online
Article
Text
id pubmed-7892843
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78928432021-03-03 Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets King, Andrew D. Raymond, Jack Lanting, Trevor Isakov, Sergei V. Mohseni, Masoud Poulin-Lamarre, Gabriel Ejtemaee, Sara Bernoudy, William Ozfidan, Isil Smirnov, Anatoly Yu. Reis, Mauricio Altomare, Fabio Babcock, Michael Baron, Catia Berkley, Andrew J. Boothby, Kelly Bunyk, Paul I. Christiani, Holly Enderud, Colin Evert, Bram Harris, Richard Hoskinson, Emile Huang, Shuiyuan Jooya, Kais Khodabandelou, Ali Ladizinsky, Nicolas Li, Ryan Lott, P. Aaron MacDonald, Allison J. R. Marsden, Danica Marsden, Gaelen Medina, Teresa Molavi, Reza Neufeld, Richard Norouzpour, Mana Oh, Travis Pavlov, Igor Perminov, Ilya Prescott, Thomas Rich, Chris Sato, Yuki Sheldan, Benjamin Sterling, George Swenson, Loren J. Tsai, Nicholas Volkmann, Mark H. Whittaker, Jed D. Wilkinson, Warren Yao, Jason Neven, Hartmut Hilton, Jeremy P. Ladizinsky, Eric Johnson, Mark W. Amin, Mohammad H. Nat Commun Article The promise of quantum computing lies in harnessing programmable quantum devices for practical applications such as efficient simulation of quantum materials and condensed matter systems. One important task is the simulation of geometrically frustrated magnets in which topological phenomena can emerge from competition between quantum and thermal fluctuations. Here we report on experimental observations of equilibration in such simulations, measured on up to 1440 qubits with microsecond resolution. By initializing the system in a state with topological obstruction, we observe quantum annealing (QA) equilibration timescales in excess of one microsecond. Measurements indicate a dynamical advantage in the quantum simulation compared with spatially local update dynamics of path-integral Monte Carlo (PIMC). The advantage increases with both system size and inverse temperature, exceeding a million-fold speedup over an efficient CPU implementation. PIMC is a leading classical method for such simulations, and a scaling advantage of this type was recently shown to be impossible in certain restricted settings. This is therefore an important piece of experimental evidence that PIMC does not simulate QA dynamics even for sign-problem-free Hamiltonians, and that near-term quantum devices can be used to accelerate computational tasks of practical relevance. Nature Publishing Group UK 2021-02-18 /pmc/articles/PMC7892843/ /pubmed/33602927 http://dx.doi.org/10.1038/s41467-021-20901-5 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
King, Andrew D.
Raymond, Jack
Lanting, Trevor
Isakov, Sergei V.
Mohseni, Masoud
Poulin-Lamarre, Gabriel
Ejtemaee, Sara
Bernoudy, William
Ozfidan, Isil
Smirnov, Anatoly Yu.
Reis, Mauricio
Altomare, Fabio
Babcock, Michael
Baron, Catia
Berkley, Andrew J.
Boothby, Kelly
Bunyk, Paul I.
Christiani, Holly
Enderud, Colin
Evert, Bram
Harris, Richard
Hoskinson, Emile
Huang, Shuiyuan
Jooya, Kais
Khodabandelou, Ali
Ladizinsky, Nicolas
Li, Ryan
Lott, P. Aaron
MacDonald, Allison J. R.
Marsden, Danica
Marsden, Gaelen
Medina, Teresa
Molavi, Reza
Neufeld, Richard
Norouzpour, Mana
Oh, Travis
Pavlov, Igor
Perminov, Ilya
Prescott, Thomas
Rich, Chris
Sato, Yuki
Sheldan, Benjamin
Sterling, George
Swenson, Loren J.
Tsai, Nicholas
Volkmann, Mark H.
Whittaker, Jed D.
Wilkinson, Warren
Yao, Jason
Neven, Hartmut
Hilton, Jeremy P.
Ladizinsky, Eric
Johnson, Mark W.
Amin, Mohammad H.
Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
title Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
title_full Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
title_fullStr Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
title_full_unstemmed Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
title_short Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
title_sort scaling advantage over path-integral monte carlo in quantum simulation of geometrically frustrated magnets
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892843/
https://www.ncbi.nlm.nih.gov/pubmed/33602927
http://dx.doi.org/10.1038/s41467-021-20901-5
work_keys_str_mv AT kingandrewd scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT raymondjack scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT lantingtrevor scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT isakovsergeiv scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT mohsenimasoud scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT poulinlamarregabriel scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT ejtemaeesara scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT bernoudywilliam scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT ozfidanisil scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT smirnovanatolyyu scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT reismauricio scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT altomarefabio scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT babcockmichael scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT baroncatia scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT berkleyandrewj scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT boothbykelly scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT bunykpauli scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT christianiholly scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT enderudcolin scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT evertbram scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT harrisrichard scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT hoskinsonemile scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT huangshuiyuan scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT jooyakais scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT khodabandelouali scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT ladizinskynicolas scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT liryan scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT lottpaaron scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT macdonaldallisonjr scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT marsdendanica scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT marsdengaelen scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT medinateresa scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT molavireza scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT neufeldrichard scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT norouzpourmana scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT ohtravis scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT pavlovigor scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT perminovilya scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT prescottthomas scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT richchris scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT satoyuki scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT sheldanbenjamin scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT sterlinggeorge scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT swensonlorenj scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT tsainicholas scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT volkmannmarkh scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT whittakerjedd scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT wilkinsonwarren scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT yaojason scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT nevenhartmut scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT hiltonjeremyp scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT ladizinskyeric scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT johnsonmarkw scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets
AT aminmohammadh scalingadvantageoverpathintegralmontecarloinquantumsimulationofgeometricallyfrustratedmagnets