Cargando…

Assisting scalable diagnosis automatically via CT images in the combat against COVID-19

The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 manifests wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Bohan, Liu, Pan, Dai, Lutao, Yang, Yanlin, Xie, Peng, Tan, Yiqing, Du, Jicheng, Shan, Wei, Zhao, Chenghui, Zhong, Qin, Lin, Xixiang, Guan, Xizhou, Xing, Ning, Sun, Yuhui, Wang, Wenjun, Zhang, Zhibing, Fu, Xia, Fan, Yanqing, Li, Meifang, Zhang, Na, Li, Lin, Liu, Yaou, Xu, Lin, Du, Jingbo, Zhao, Zhenhua, Hu, Xuelong, Fan, Weipeng, Wang, Rongpin, Wu, Chongchong, Nie, Yongkang, Cheng, Liuquan, Ma, Lin, Li, Zongren, Jia, Qian, Liu, Minchao, Guo, Huayuan, Huang, Gao, Shen, Haipeng, Zhang, Liang, Zhang, Peifang, Guo, Gang, Li, Hao, An, Weimin, Zhou, Jianxin, He, Kunlun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892869/
https://www.ncbi.nlm.nih.gov/pubmed/33603047
http://dx.doi.org/10.1038/s41598-021-83424-5
_version_ 1783652939830657024
author Liu, Bohan
Liu, Pan
Dai, Lutao
Yang, Yanlin
Xie, Peng
Tan, Yiqing
Du, Jicheng
Shan, Wei
Zhao, Chenghui
Zhong, Qin
Lin, Xixiang
Guan, Xizhou
Xing, Ning
Sun, Yuhui
Wang, Wenjun
Zhang, Zhibing
Fu, Xia
Fan, Yanqing
Li, Meifang
Zhang, Na
Li, Lin
Liu, Yaou
Xu, Lin
Du, Jingbo
Zhao, Zhenhua
Hu, Xuelong
Fan, Weipeng
Wang, Rongpin
Wu, Chongchong
Nie, Yongkang
Cheng, Liuquan
Ma, Lin
Li, Zongren
Jia, Qian
Liu, Minchao
Guo, Huayuan
Huang, Gao
Shen, Haipeng
Zhang, Liang
Zhang, Peifang
Guo, Gang
Li, Hao
An, Weimin
Zhou, Jianxin
He, Kunlun
author_facet Liu, Bohan
Liu, Pan
Dai, Lutao
Yang, Yanlin
Xie, Peng
Tan, Yiqing
Du, Jicheng
Shan, Wei
Zhao, Chenghui
Zhong, Qin
Lin, Xixiang
Guan, Xizhou
Xing, Ning
Sun, Yuhui
Wang, Wenjun
Zhang, Zhibing
Fu, Xia
Fan, Yanqing
Li, Meifang
Zhang, Na
Li, Lin
Liu, Yaou
Xu, Lin
Du, Jingbo
Zhao, Zhenhua
Hu, Xuelong
Fan, Weipeng
Wang, Rongpin
Wu, Chongchong
Nie, Yongkang
Cheng, Liuquan
Ma, Lin
Li, Zongren
Jia, Qian
Liu, Minchao
Guo, Huayuan
Huang, Gao
Shen, Haipeng
Zhang, Liang
Zhang, Peifang
Guo, Gang
Li, Hao
An, Weimin
Zhou, Jianxin
He, Kunlun
author_sort Liu, Bohan
collection PubMed
description The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 manifests with chest computed tomography (CT) abnormalities, some even before the onset of symptoms. We tested the hypothesis that the application of deep learning (DL) to 3D CT images could help identify COVID-19 infections. Using data from 920 COVID-19 and 1,073 non-COVID-19 pneumonia patients, we developed a modified DenseNet-264 model, COVIDNet, to classify CT images to either class. When tested on an independent set of 233 COVID-19 and 289 non-COVID-19 pneumonia patients, COVIDNet achieved an accuracy rate of 94.3% and an area under the curve of 0.98. As of March 23, 2020, the COVIDNet system had been used 11,966 times with a sensitivity of 91.12% and a specificity of 88.50% in six hospitals with PCR confirmation. Application of DL to CT images may improve both efficiency and capacity of case detection and long-term surveillance.
format Online
Article
Text
id pubmed-7892869
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78928692021-02-23 Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 Liu, Bohan Liu, Pan Dai, Lutao Yang, Yanlin Xie, Peng Tan, Yiqing Du, Jicheng Shan, Wei Zhao, Chenghui Zhong, Qin Lin, Xixiang Guan, Xizhou Xing, Ning Sun, Yuhui Wang, Wenjun Zhang, Zhibing Fu, Xia Fan, Yanqing Li, Meifang Zhang, Na Li, Lin Liu, Yaou Xu, Lin Du, Jingbo Zhao, Zhenhua Hu, Xuelong Fan, Weipeng Wang, Rongpin Wu, Chongchong Nie, Yongkang Cheng, Liuquan Ma, Lin Li, Zongren Jia, Qian Liu, Minchao Guo, Huayuan Huang, Gao Shen, Haipeng Zhang, Liang Zhang, Peifang Guo, Gang Li, Hao An, Weimin Zhou, Jianxin He, Kunlun Sci Rep Article The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 manifests with chest computed tomography (CT) abnormalities, some even before the onset of symptoms. We tested the hypothesis that the application of deep learning (DL) to 3D CT images could help identify COVID-19 infections. Using data from 920 COVID-19 and 1,073 non-COVID-19 pneumonia patients, we developed a modified DenseNet-264 model, COVIDNet, to classify CT images to either class. When tested on an independent set of 233 COVID-19 and 289 non-COVID-19 pneumonia patients, COVIDNet achieved an accuracy rate of 94.3% and an area under the curve of 0.98. As of March 23, 2020, the COVIDNet system had been used 11,966 times with a sensitivity of 91.12% and a specificity of 88.50% in six hospitals with PCR confirmation. Application of DL to CT images may improve both efficiency and capacity of case detection and long-term surveillance. Nature Publishing Group UK 2021-02-18 /pmc/articles/PMC7892869/ /pubmed/33603047 http://dx.doi.org/10.1038/s41598-021-83424-5 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Liu, Bohan
Liu, Pan
Dai, Lutao
Yang, Yanlin
Xie, Peng
Tan, Yiqing
Du, Jicheng
Shan, Wei
Zhao, Chenghui
Zhong, Qin
Lin, Xixiang
Guan, Xizhou
Xing, Ning
Sun, Yuhui
Wang, Wenjun
Zhang, Zhibing
Fu, Xia
Fan, Yanqing
Li, Meifang
Zhang, Na
Li, Lin
Liu, Yaou
Xu, Lin
Du, Jingbo
Zhao, Zhenhua
Hu, Xuelong
Fan, Weipeng
Wang, Rongpin
Wu, Chongchong
Nie, Yongkang
Cheng, Liuquan
Ma, Lin
Li, Zongren
Jia, Qian
Liu, Minchao
Guo, Huayuan
Huang, Gao
Shen, Haipeng
Zhang, Liang
Zhang, Peifang
Guo, Gang
Li, Hao
An, Weimin
Zhou, Jianxin
He, Kunlun
Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
title Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
title_full Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
title_fullStr Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
title_full_unstemmed Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
title_short Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
title_sort assisting scalable diagnosis automatically via ct images in the combat against covid-19
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892869/
https://www.ncbi.nlm.nih.gov/pubmed/33603047
http://dx.doi.org/10.1038/s41598-021-83424-5
work_keys_str_mv AT liubohan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT liupan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT dailutao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT yangyanlin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT xiepeng assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT tanyiqing assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT dujicheng assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT shanwei assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT zhaochenghui assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT zhongqin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT linxixiang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT guanxizhou assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT xingning assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT sunyuhui assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT wangwenjun assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT zhangzhibing assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT fuxia assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT fanyanqing assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT limeifang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT zhangna assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT lilin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT liuyaou assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT xulin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT dujingbo assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT zhaozhenhua assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT huxuelong assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT fanweipeng assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT wangrongpin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT wuchongchong assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT nieyongkang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT chengliuquan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT malin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT lizongren assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT jiaqian assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT liuminchao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT guohuayuan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT huanggao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT shenhaipeng assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT zhangliang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT zhangpeifang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT guogang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT lihao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT anweimin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT zhoujianxin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19
AT hekunlun assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19