Cargando…
Assisting scalable diagnosis automatically via CT images in the combat against COVID-19
The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 manifests wit...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892869/ https://www.ncbi.nlm.nih.gov/pubmed/33603047 http://dx.doi.org/10.1038/s41598-021-83424-5 |
_version_ | 1783652939830657024 |
---|---|
author | Liu, Bohan Liu, Pan Dai, Lutao Yang, Yanlin Xie, Peng Tan, Yiqing Du, Jicheng Shan, Wei Zhao, Chenghui Zhong, Qin Lin, Xixiang Guan, Xizhou Xing, Ning Sun, Yuhui Wang, Wenjun Zhang, Zhibing Fu, Xia Fan, Yanqing Li, Meifang Zhang, Na Li, Lin Liu, Yaou Xu, Lin Du, Jingbo Zhao, Zhenhua Hu, Xuelong Fan, Weipeng Wang, Rongpin Wu, Chongchong Nie, Yongkang Cheng, Liuquan Ma, Lin Li, Zongren Jia, Qian Liu, Minchao Guo, Huayuan Huang, Gao Shen, Haipeng Zhang, Liang Zhang, Peifang Guo, Gang Li, Hao An, Weimin Zhou, Jianxin He, Kunlun |
author_facet | Liu, Bohan Liu, Pan Dai, Lutao Yang, Yanlin Xie, Peng Tan, Yiqing Du, Jicheng Shan, Wei Zhao, Chenghui Zhong, Qin Lin, Xixiang Guan, Xizhou Xing, Ning Sun, Yuhui Wang, Wenjun Zhang, Zhibing Fu, Xia Fan, Yanqing Li, Meifang Zhang, Na Li, Lin Liu, Yaou Xu, Lin Du, Jingbo Zhao, Zhenhua Hu, Xuelong Fan, Weipeng Wang, Rongpin Wu, Chongchong Nie, Yongkang Cheng, Liuquan Ma, Lin Li, Zongren Jia, Qian Liu, Minchao Guo, Huayuan Huang, Gao Shen, Haipeng Zhang, Liang Zhang, Peifang Guo, Gang Li, Hao An, Weimin Zhou, Jianxin He, Kunlun |
author_sort | Liu, Bohan |
collection | PubMed |
description | The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 manifests with chest computed tomography (CT) abnormalities, some even before the onset of symptoms. We tested the hypothesis that the application of deep learning (DL) to 3D CT images could help identify COVID-19 infections. Using data from 920 COVID-19 and 1,073 non-COVID-19 pneumonia patients, we developed a modified DenseNet-264 model, COVIDNet, to classify CT images to either class. When tested on an independent set of 233 COVID-19 and 289 non-COVID-19 pneumonia patients, COVIDNet achieved an accuracy rate of 94.3% and an area under the curve of 0.98. As of March 23, 2020, the COVIDNet system had been used 11,966 times with a sensitivity of 91.12% and a specificity of 88.50% in six hospitals with PCR confirmation. Application of DL to CT images may improve both efficiency and capacity of case detection and long-term surveillance. |
format | Online Article Text |
id | pubmed-7892869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78928692021-02-23 Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 Liu, Bohan Liu, Pan Dai, Lutao Yang, Yanlin Xie, Peng Tan, Yiqing Du, Jicheng Shan, Wei Zhao, Chenghui Zhong, Qin Lin, Xixiang Guan, Xizhou Xing, Ning Sun, Yuhui Wang, Wenjun Zhang, Zhibing Fu, Xia Fan, Yanqing Li, Meifang Zhang, Na Li, Lin Liu, Yaou Xu, Lin Du, Jingbo Zhao, Zhenhua Hu, Xuelong Fan, Weipeng Wang, Rongpin Wu, Chongchong Nie, Yongkang Cheng, Liuquan Ma, Lin Li, Zongren Jia, Qian Liu, Minchao Guo, Huayuan Huang, Gao Shen, Haipeng Zhang, Liang Zhang, Peifang Guo, Gang Li, Hao An, Weimin Zhou, Jianxin He, Kunlun Sci Rep Article The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 manifests with chest computed tomography (CT) abnormalities, some even before the onset of symptoms. We tested the hypothesis that the application of deep learning (DL) to 3D CT images could help identify COVID-19 infections. Using data from 920 COVID-19 and 1,073 non-COVID-19 pneumonia patients, we developed a modified DenseNet-264 model, COVIDNet, to classify CT images to either class. When tested on an independent set of 233 COVID-19 and 289 non-COVID-19 pneumonia patients, COVIDNet achieved an accuracy rate of 94.3% and an area under the curve of 0.98. As of March 23, 2020, the COVIDNet system had been used 11,966 times with a sensitivity of 91.12% and a specificity of 88.50% in six hospitals with PCR confirmation. Application of DL to CT images may improve both efficiency and capacity of case detection and long-term surveillance. Nature Publishing Group UK 2021-02-18 /pmc/articles/PMC7892869/ /pubmed/33603047 http://dx.doi.org/10.1038/s41598-021-83424-5 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Liu, Bohan Liu, Pan Dai, Lutao Yang, Yanlin Xie, Peng Tan, Yiqing Du, Jicheng Shan, Wei Zhao, Chenghui Zhong, Qin Lin, Xixiang Guan, Xizhou Xing, Ning Sun, Yuhui Wang, Wenjun Zhang, Zhibing Fu, Xia Fan, Yanqing Li, Meifang Zhang, Na Li, Lin Liu, Yaou Xu, Lin Du, Jingbo Zhao, Zhenhua Hu, Xuelong Fan, Weipeng Wang, Rongpin Wu, Chongchong Nie, Yongkang Cheng, Liuquan Ma, Lin Li, Zongren Jia, Qian Liu, Minchao Guo, Huayuan Huang, Gao Shen, Haipeng Zhang, Liang Zhang, Peifang Guo, Gang Li, Hao An, Weimin Zhou, Jianxin He, Kunlun Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
title | Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
title_full | Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
title_fullStr | Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
title_full_unstemmed | Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
title_short | Assisting scalable diagnosis automatically via CT images in the combat against COVID-19 |
title_sort | assisting scalable diagnosis automatically via ct images in the combat against covid-19 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892869/ https://www.ncbi.nlm.nih.gov/pubmed/33603047 http://dx.doi.org/10.1038/s41598-021-83424-5 |
work_keys_str_mv | AT liubohan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT liupan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT dailutao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT yangyanlin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT xiepeng assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT tanyiqing assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT dujicheng assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT shanwei assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT zhaochenghui assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT zhongqin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT linxixiang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT guanxizhou assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT xingning assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT sunyuhui assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT wangwenjun assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT zhangzhibing assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT fuxia assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT fanyanqing assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT limeifang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT zhangna assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT lilin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT liuyaou assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT xulin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT dujingbo assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT zhaozhenhua assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT huxuelong assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT fanweipeng assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT wangrongpin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT wuchongchong assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT nieyongkang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT chengliuquan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT malin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT lizongren assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT jiaqian assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT liuminchao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT guohuayuan assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT huanggao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT shenhaipeng assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT zhangliang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT zhangpeifang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT guogang assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT lihao assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT anweimin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT zhoujianxin assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 AT hekunlun assistingscalablediagnosisautomaticallyviactimagesinthecombatagainstcovid19 |