Estimation of energy expenditure of Nordic walking: a crossover trial
BACKGROUND: Nordic walking (NW) requires more energy compared with conventional walking (W). However, the metabolic equation for NW has not been reported. Therefore, this study aimed to characterize responses in oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface elec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893942/ https://www.ncbi.nlm.nih.gov/pubmed/33608046 http://dx.doi.org/10.1186/s13102-021-00240-0 |
_version_ | 1783653149158932480 |
---|---|
author | Baek, Sora Ha, Yuncheol |
author_facet | Baek, Sora Ha, Yuncheol |
author_sort | Baek, Sora |
collection | PubMed |
description | BACKGROUND: Nordic walking (NW) requires more energy compared with conventional walking (W). However, the metabolic equation for NW has not been reported. Therefore, this study aimed to characterize responses in oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography of the upper and lower limb muscles during NW and W and develop a metabolic equation for energy expenditure (E, mL·kg(− 1)·min(− 1)) of NW. METHODS: This study was performed in a randomized, controlled, crossover design to test the energy expenditure during NW and W. Fifteen healthy young men were enrolled (aged 23.7 ± 3.0 years). All participants performed two randomly ordered walking tests (NW and W) on a treadmill at a predetermined stepwise incremental walking speed (3–5 km·h(− 1)) and grade (0–7%). The oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography signals of the three upper limb muscles and three lower limb muscles in their right body were recorded and compared between NW and W using paired-t test. Multiple linear regression analysis was used to draw estimation of E during W and NW. RESULTS: Oxygen uptake (+ 15.8%), minute ventilation (+ 17.0%), heart rate (+ 8.4%), and systolic blood pressure (+ 7.7%) were higher in NW than in W (P < .05). NW resulted in increased muscle activity in all of the upper limb muscles (P < .05). In the lower limb, surface electromyography activities in two of the three lower limb muscles were increased in NW than in W only during level walking (P < .05). Energy expenditure during W and NW was estimated as follows: E(NW) = 6.1 + 0.09 × speed + 1.19 × speed × grade and E(W) = 4.4 + 0.09 × speed + 1.20 × speed × grade. CONCLUSION: NW showed higher work intensity than W, with an oxygen consumption difference of 1.7 mL·kg(− 1)·min(− 1). The coefficients were not different between the two walking methods. NW involved more muscles of the upper body than W. |
format | Online Article Text |
id | pubmed-7893942 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-78939422021-02-22 Estimation of energy expenditure of Nordic walking: a crossover trial Baek, Sora Ha, Yuncheol BMC Sports Sci Med Rehabil Research Article BACKGROUND: Nordic walking (NW) requires more energy compared with conventional walking (W). However, the metabolic equation for NW has not been reported. Therefore, this study aimed to characterize responses in oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography of the upper and lower limb muscles during NW and W and develop a metabolic equation for energy expenditure (E, mL·kg(− 1)·min(− 1)) of NW. METHODS: This study was performed in a randomized, controlled, crossover design to test the energy expenditure during NW and W. Fifteen healthy young men were enrolled (aged 23.7 ± 3.0 years). All participants performed two randomly ordered walking tests (NW and W) on a treadmill at a predetermined stepwise incremental walking speed (3–5 km·h(− 1)) and grade (0–7%). The oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography signals of the three upper limb muscles and three lower limb muscles in their right body were recorded and compared between NW and W using paired-t test. Multiple linear regression analysis was used to draw estimation of E during W and NW. RESULTS: Oxygen uptake (+ 15.8%), minute ventilation (+ 17.0%), heart rate (+ 8.4%), and systolic blood pressure (+ 7.7%) were higher in NW than in W (P < .05). NW resulted in increased muscle activity in all of the upper limb muscles (P < .05). In the lower limb, surface electromyography activities in two of the three lower limb muscles were increased in NW than in W only during level walking (P < .05). Energy expenditure during W and NW was estimated as follows: E(NW) = 6.1 + 0.09 × speed + 1.19 × speed × grade and E(W) = 4.4 + 0.09 × speed + 1.20 × speed × grade. CONCLUSION: NW showed higher work intensity than W, with an oxygen consumption difference of 1.7 mL·kg(− 1)·min(− 1). The coefficients were not different between the two walking methods. NW involved more muscles of the upper body than W. BioMed Central 2021-02-19 /pmc/articles/PMC7893942/ /pubmed/33608046 http://dx.doi.org/10.1186/s13102-021-00240-0 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Baek, Sora Ha, Yuncheol Estimation of energy expenditure of Nordic walking: a crossover trial |
title | Estimation of energy expenditure of Nordic walking: a crossover trial |
title_full | Estimation of energy expenditure of Nordic walking: a crossover trial |
title_fullStr | Estimation of energy expenditure of Nordic walking: a crossover trial |
title_full_unstemmed | Estimation of energy expenditure of Nordic walking: a crossover trial |
title_short | Estimation of energy expenditure of Nordic walking: a crossover trial |
title_sort | estimation of energy expenditure of nordic walking: a crossover trial |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893942/ https://www.ncbi.nlm.nih.gov/pubmed/33608046 http://dx.doi.org/10.1186/s13102-021-00240-0 |
work_keys_str_mv | AT baeksora estimationofenergyexpenditureofnordicwalkingacrossovertrial AT hayuncheol estimationofenergyexpenditureofnordicwalkingacrossovertrial |